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Abstract

The Push-Pull protocol is a well-studied round-robin rumor spreading protocol

defined as follows: initially a node knows a rumor and wants to spread it to all

nodes in a network quickly. In each round, every informed node sends the rumor

to a random neighbor, and every uninformed node contacts a random neighbor and

gets the rumor from her if she knows it. We analyze the behavior of this protocol on

random k-trees, a class of power law graphs, which are small-world and have large

clustering coefficients, built as follows: initially we have a k-clique. In every step a

new node is born, a random k-clique of the current graph is chosen, and the new

node is joined to all nodes of the k-clique. When k > 2 is fixed, we show that if

initially a random node is aware of the rumor, then with probability 1− o(1) after

O
(

(log n)1+2/k · log log n · f(n)
)

rounds the rumor propagates to n − o(n) nodes,

where n is the number of nodes and f(n) is any slowly growing function. Since

these graphs have polynomially small conductance, vertex expansion O(1/n) and
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constant treewidth, these results demonstrate that Push-Pull can be efficient even

on poorly connected networks.

On the negative side, we prove that with probability 1 − o(1) the protocol

needs at least Ω
(

n(k−1)/(k2+k−1)/f2(n)
)

rounds to inform all nodes. This expo-

nential dichotomy between time required for informing almost all and all nodes is

striking. Our main contribution is to present, for the first time, a natural class

of random graphs in which such a phenomenon can be observed. Our technique

for proving the upper bound successfully carries over to a closely related class of

graphs, the random k-Apollonian networks, for which we prove an upper bound of

O ((log n)ck · log log n · f(n)) rounds for informing n − o(n) nodes with probability

1− o(1) when k > 3 is fixed. Here, ck = (k2 − 3)/(k − 1)2 < 1 + 2/k.

Keywords: randomized rumor spreading, push-pull protocol, random k-trees,

random k-Apollonian networks, urn models.

1 Introduction

Randomized rumor spreading is an important primitive for information dissemination

in networks and has numerous applications in network science, ranging from spreading

information in the WWW and Twitter to spreading viruses and diffusion of ideas in

human communities (see [5, 10, 11, 12, 19]). A well studied rumor spreading protocol

is the Push-Pull protocol, introduced by Demers, Greene, Hauser, Irish, Larson, Shenker,

Sturgis, Swinehart, and Terry [9]. Suppose that one node in a network is aware of a piece of

information, the ‘rumor.’ The protocol proceeds in rounds. In each round, every informed

node contacts a random neighbor and sends the rumor to it (‘pushes’ the rumor), and

every uninformed nodes contacts a random neighbor and gets the rumor if the neighbor

knows it (‘pulls’ the rumor). Note that this is a synchronous protocol, e.g. a node that

receives a rumor in a certain round cannot send it on in the same round.

A point to point communication network can be modelled as an undirected graph: the

nodes represent the processors and the links represent communication channels between

them. Studying rumor spreading has several applications to distributed computing in

such networks, of which we mention just two. The first is in broadcasting algorithms:

a single processor wants to broadcast a piece of information to all other processors in

the network (see [25] for a survey). There are at least three advantages to the Push-

Pull protocol: it is simple (each node makes a simple local decision in each round; no

knowledge of the global topology is needed; no state is maintained), scalable (the protocol

is independent of the size of network: it does not grow more complex as the network

grows) and robust (the protocol tolerates random node/link failures without the use of

error recovery mechanisms, see [15]). A second application comes from the maintenance of
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databases replicated at many sites, e.g., yellow pages, name servers, or server directories.

There are updates injected at various nodes, and these updates must propagate to all

nodes in the network. In each round, a processor communicates with a random neighbor

and they share any new information, so that eventually all copies of the database converge

to the same contents. See [9] for details. Other than the aforementioned applications,

rumor spreading protocols have successfully been applied in various contexts such as

resource discovery [24], distributed averaging [3], data aggregation [28], and the spread of

computer viruses [2].

We only consider simple, undirected and connected graphs. For a graph G, let ∆(G)

and diam(G) denote the maximum degree and the diameter of G, respectively, and let

deg(v) denote the degree of a vertex v. Most studies in randomized rumor spreading

focus on the runtime of this protocol, defined as the number of rounds taken until a

rumor initiated by one vertex reaches all other vertices. It is clear that diam(G)/2 is a

lower bound for the runtime of the Push-Pull protocol. We say an event happens with

high probability (whp) if its probability approaches 1 as n goes to infinity. Feige, Peleg,

Raghavan and Upfal [15] showed that for an n-vertex G, whp the rumor reaches all vertices

in O(∆(G) · (diam(G) + logn)) rounds. This protocol has been studied on many graph

classes such as complete graphs [27], Erdős-Réyni random graphs [14, 15, 17, 35], random

regular graphs [1, 18], and hypercube graphs [15]. For most of these classes it turns out

that whp the runtime is O(diam(G) + logn), which does not depend on the maximum

degree.

Randomized rumor spreading has recently been studied on real-world networks models.

Doerr, Fouz, and Friedrich [10] proved an upper bound of O(logn) for the runtime on

preferential attachment graphs, and Fountoulakis, Panagiotou, and Sauerwald [19] proved

the same upper bound (up to constant factors) for the runtime on the giant component

of random graphs with given expected degrees (also known as the Chung-Lu model) with

power law degree distribution.

The runtime is closely related to the expansion profile of the graph. Let Φ(G) and α(G)

denote the conductance and the vertex expansion of a graph G, respectively. After a series

of results by various scholars, Giakkoupis [22, 23] showed that for any n-vertex graph G,

the runtime of the Push-Pull protocol isO (min{Φ(G)−1 · logn, α(G)−1 · log∆(G) · logn}).
It is known that whp preferential attachment graphs and random graphs with power law

expected degrees have conductance Ω(1) (see [6, 32]). So it is not surprising that rumors

spread fast on these graphs. Censor-Hillel, Haeupler, Kelner, and Maymounkov [4] pre-

sented a different rumor spreading protocol that whp distributes the rumor inO(diam(G)+

polylog(n)) rounds on any connected n-vertex graph, which seems particularly suitable

for poorly connected graphs.
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1.1 Our contribution

We study the Push-Pull protocol on random k-trees, a class of random graphs defined as

follows.

Definition (Random k-tree process [20]). Let k be a positive integer. Build a sequence

G(0), G(1), . . . of random graphs as follows. The graph G(0) is just a clique on k vertices.

For each 1 ≤ t ≤ n, G(t) is obtained from G(t − 1) as follows: a k-clique of G(t − 1)

is chosen uniformly at random, a new vertex is born and is joined to all vertices of the

chosen k-clique. The graph G(n) is called a random k-tree on n+ k vertices.

We remark that this process is different from the random k-tree process defined by

Cooper and Uehara [8] which was further studied in [7].

Sometimes it is convenient to view this as a ‘random graph evolving in time.’ In this

interpretation, in every round 1, 2, . . . , a new vertex is born and is added to the evolving

graph, and G(t) denotes the graph at the end of round t. Observe that G(t) has k + t

many vertices and kt+ 1 many k-cliques.

As in the preferential attachment scheme, the random k-tree process enjoys a ‘the

rich get richer’ effect. Think of the number of k-cliques containing any vertex v as the

‘wealth’ of v (note that this quantity is linearly related to deg(v)). Then, the probability

that the new vertex attaches to v is proportional to the wealth of v, and if this happens,

the wealth of v increases by k − 1. On the other hand, random k-trees have much larger

clustering coefficients than preferential attachment graphs, as all neighbors of each new

vertex are joined to each other. It is well-known that real-world networks tend to have

large clustering coefficients (see, e.g., [36, Table 1]).

Gao [20] showed that whp the degree sequence of G(n) asymptotically follows a power

law distribution with exponent 2 + 1
k−1

. In Section 3 we show that whp the diameter of

G(n) is O(logn), and its clustering coefficient is at least 1/2, as opposed to preferential

attachment graphs and random graphs with power law expected degrees, whose clustering

coefficients are o(1) whp. As per these properties, random k-trees may serve as more

realistic models for real-world networks.

On the other hand, in Section 3 we prove that with high probability a random k-

tree on n + k vertices has conductance O
(

log n · n−1/k
)

and vertex expansion O(k/n).

Therefore we cannot resort to existing results linking the runtime to expansion properties

to show rumors spread fast in these graphs. Another interesting structural property of

a random k-tree is its treewidth (see [29] for a comprehensive survey). Gao [21] proved

that many random graph models, including Erdős-Réyni random graphs with expected

degree ω(logn) and preferential attachment graphs with out-degree greater than 11, have

treewidth Θ(n), whereas all random k-trees have treewidth k by construction. (According
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to [21], not much is known about the treewidth of a preferential attachment graph with

out-degree between 3 and 11.)

In conclusion, distinguishing features of random k-trees, such as high clustering co-

efficient, bad expansion (polynomially small conductance) and tree-like structure (small

treewidth), inspired us to study randomized rumor spreading on this unexplored random

environment. Our first main contribution is the following theorem.

Theorem 1. Let k > 2 be constant and let f(n) = o(log log n) be an arbitrary function

going to infinity with n. If initially a random vertex of an (n + k)-vertex random k-tree

knows a rumor, then with high probability after O
(

(log n)1+
2
k · log logn · f(n) 3

k

)

rounds

of the Push-Pull protocol, n− o(n) vertices will know the rumor.

We give a high-level sketch of the proof of Theorem 1. Let m = o(n) be a suitably

chosen parameter, and note that G(m) is a subgraph of G = G(n). Consider the con-

nected components of G−G(m). Most vertices born later than round m have relatively

small degree, so most these components have a small maximum degree (and logarithmic

diameter) thus the rumor spreads quickly inside each of them. A vertex v ∈ V (G(m))

typically has a large degree, but this means there is a high chance that v has a neighbor x

with small degree, which quickly receives the rumor from v and spreads it (or vice versa).

We build an almost-spanning tree T of G(m) with logarithmic height, such that for every

edge uv of T , one of u and v have a small degree, or u and v have a common neighbor with

a small degree. Either of these situations mean the rumor is exchanged quickly between u

and v. This tree T then works as a ‘highway system’ to spread the rumor within vertices

of G(m) and from them to the components of G−G(m).

The main novelty in this proof is how the almost-spanning tree is built and used (using

small degree vertices for fast rumor transmission between high degree vertices has also

been used in previous papers, e.g. [10, 19]). Our second main contribution is the following

theorem, which gives a polynomial lower bound for the runtime.

Theorem 2. Let f(n) = o(log log n) be an arbitrary function going to infinity with n.

Suppose that initially one vertex in the random k-tree, G(n), knows the rumor. Then,

with high probability the Push-Pull protocol needs at least n(k−1)/(k2+k−1)f(n)−2 rounds to

inform all vertices of G(n).

We give a high-level sketch of the proof of Theorem 2. A barrier in a graph is a subset

D of edges of size O(1), whose deletion disconnects the graph. If both endpoints of every

edge of a barrier D have large degrees, then the protocol needs a large time to pass the

rumor through D. For proving Theorem 2, we prove a random k-tree has a barrier whp.

The main novelty in this proof is introducing and using the notion of a barrier.
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It is instructive to contrast Theorems 1 and 2. The former implies that if you want to

inform almost all the vertices, then you just need to wait for a polylogarithmic number

of rounds. The latter implies that, however, if you want to inform each and every vertex,

then you have to wait for polynomially many rounds. This is a striking phenomenon

and the main message of this paper is to present, for the first time, a natural class of

random graphs in which this phenomenon can be observed. In fact, in applications such

as viral marketing and voting, it is more appealing to inform 99 percent of the vertices very

quickly instead of waiting a long time until everyone gets informed. For such applications,

Theorem 1 implies that the Push-Pull protocol can be effective even on poorly connected

graphs.

It is worth mentioning that bounds for the number of rounds to inform almost all

vertices have already appeared in the literature, see for instance [11, 19]. In particular,

for power-law Chung-Lu graphs with exponent in (2, 3), it is shown in [19] that whp after

O(log logn) rounds the rumor spreads in n − o(n) vertices, but to inform all vertices of

the giant component Θ(log n) rounds are needed. This result also shows a great difference

between the two cases, however in both cases the required time is quite small.

A closely related class of graphs is the class of random k-Apollonian networks, in-

troduced by Zhang, Comellas, Fertin, and Rong [37]. Their construction is very similar

to that of random k-trees, with just one difference: if a k-clique is chosen in a certain

round, it will never be chosen again. It is known that whp random k-Apollonian networks

exhibit a power law degree distribution and large clustering coefficient [34, 38] and have

logarithmic diameter [7]. Our third main contribution is the following theorem.

Theorem 3. Let k > 3 be constant and let f(n) = o(log log n) be an arbitrary function

going to infinity with n. Assume that initially a random vertex of an (n+k)-vertex random

k-Apollonian network knows a rumor. Then, with high probability after

O
(

(log n)(k
2
−3)/(k−1)2 · log log n · f(n)2/k

)

rounds of the Push-Pull protocol, at least n− o(n) vertices will know the rumor.

The proof of Theorem 3 is along the lines of that of Theorem 1, although there are

several differences. Note that we have (k2 − 3)/(k − 1)2 < 1 + 2/k, so our upper bound

for random k-Apollonian networks is slightly stronger than that for random k-trees.

Unfortunately, our technique for proving Theorem 2 does not extend to random k-

Apollonian networks, although we believe that whp we need a polynomial number of

rounds to inform all vertices in a random k-Apollonian network as well. We leave this as

a conjecture.

For the rest of the paper, k is a constant greater than 1, and the asymptotics are for

n going to infinity. Several times in our proofs we use urn models to analyze the vertices’
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degrees and the number of vertices in certain parts of a random k-tree. We also use a result

on the height of random recursive trees to conclude that random k-trees have logarithmic

diameter. The connections with urn models are built in Section 2. In Section 3 we

study basic properties of random k-trees, demonstrating their similarities with real-world

graphs. Theorems 1, 2, and 3 are proved in Sections 4, 5, and 6, respectively.

2 Connections with urn theory

We will need some definitions and results from urn theory (see [26] for a general introduc-

tion). After reviewing these, we build some connections with random k-trees that will be

used throughout.

Definition (Pólya-Eggenberger urn). Start with W0 white and B0 black balls in an urn.

In every step a ball is drawn from the urn uniformly at random, the ball is returned to

the urn, and s balls of the same color are added to the urn. Let Urn(W0, B0, s, n) denote

the number of white balls right after n draws.

Proposition 1. Let X = Urn(a, b, k, n) and w = a + b. Then

E
[

X2
]

=
(

a+
a

w
kn
)2

+
abk2n(kn + w)

w2(w + k)

and for any c ≥ (a+ b)/k we have

Pr [X = a] ≤
(

c

c+ n

)a/k

.

Proof. The first statement follows from the following well known formulae for the expected

value and the variance of X (see [31, Corollary 5.1.1] for instance):

E [X ] = a+
a

w
kn , Var [X ] =

abk2n(kn + w)

w2(w + k)
.
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For the second statement, we have

Pr [X = a] =
b

a + b
· b+ k

a+ b+ k
· · · · b+ (n− 1)k

a+ b+ (n− 1)k

=
n−1
∏

i=0

(

1− a

a+ b+ ik

)

6

n−1
∏

i=0

(

1− a

ck + ik

)

6 exp

(

−
n−1
∑

i=0

a

ck + ik

)

=

{

exp

(

n−1
∑

i=0

1

c + i

)}−a/k

6

{

exp

(
∫ c+n

x=c

dx

x

)}−a/k

=

(

c

c+ n

)a/k

.

Definition (Generalized Pólya-Eggenberger urn). Let α, β, γ, δ be nonnegative integers.

We start with W0 white and B0 black balls in an urn. In every step a ball is drawn

from the urn uniformly at random and returned to the urn. Additionally, if the ball

is white, then δ white balls and γ black balls are returned to the urn; otherwise, i.e.

if the ball is black, then β white balls and α black balls are returned to the urn. Let

Urn

(

W0, B0,

[

α β

γ δ

]

, n

)

denote the number of white balls right after n draws.

Note that Pólya-Eggenberger urns correspond to the matrix

[

s 0

0 s

]

. The following

proposition follows from known results.

Proposition 2. Let X = Urn

(

W0, B0,

[

α 0

γ δ

]

, n

)

and let r be a positive integer. If

γ, δ > 0, α = γ + δ, and rδ > α, then we have

E [Xr] 6

(

αn

W0 +B0

)rδ/α r−1
∏

i=0

(W0 + iδ) +O
(

n(r−1)δ/α
)

.

Proof. By [16, Proposition 15] we have

E [Xr] = nrδ/αδr
Γ(W0/δ + r)Γ((W0 +B0)/α)

Γ(W0/δ)Γ((W0 +B0 + rδ)/α)
+O

(

n(r−1)δ/α
)

,

Note that
Γ(W0/δ + r)

Γ(W0/δ)
=

r−1
∏

i=0

(i+W0/δ) .
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Finally, the inequality

Γ((W0 +B0 + rδ)/α)

Γ((W0 +B0)/α)
> ((W0 +B0)/α)

rδ/α

follows from rδ > α and the following inequality (see, e.g., [30, inequality (2.2)])

Γ(x+ 1)

Γ(x+ s)
> x1−s ∀x > 0, s ∈ [0, 1] .

Proposition 3. Suppose that in G(j) vertex x has A > 0 neighbors, and is contained in

B many k-cliques. Conditional on this, the degree of x in G(n+ j) is distributed as

A+

(

Urn

(

B, kj + 1− B,

[

k 0

1 k − 1

]

, n

)

−B

)

/

(k − 1) .

Proof. We claim that the total number of k-cliques containing x in G(n+ j) is distributed

as Urn

(

B, kj + 1− B,

[

k 0

1 k − 1

]

, n

)

. At the end of round j, there are B many k-

cliques containing x, and kj+1−B many k-cliques not containing x. In each subsequent

round j+1, . . . , j+n, a random k-clique is chosen and k new k-cliques are created. If the

chosen k-clique contains x, then k − 1 new k-cliques containing x are created, and 1 new

k-clique not containing x is created. Otherwise, i.e. if the chosen k-clique does not contain

x, then no new k-cliques containing x is created, and k new k-cliques not containing x

are created, and the claim follows.

Hence the number of k-cliques that are created in rounds j+1, . . . , j+n and contain x

is distributed as Urn

(

B, kj + 1−B,

[

k 0

1 k − 1

]

, n

)

−B, and the proof follows by noting

that every new neighbor of x creates k − 1 new k-cliques containing x.

Combining Propositions 2 and 3 we obtain the following lemma.

Lemma 4. Let 1 6 j 6 n and let q be a positive integer. Let x denote the vertex

born in round j. Conditional on any G(j), the probability that x has degree greater than

k + q(n/j)(k−1)/k in G(n) is O
(

q
√
q exp(−q)

)

.

Proof. Let X = Urn

(

k, kj − k + 1,

[

k 0

1 k − 1

]

, n− j

)

. By Proposition 3, deg(x) is

distributed as k + (X − k) /(k − 1). By Proposition 2,

E [Xq] 6 (1 + o(1))

(

k(n− j)

kj + 1

)

q(k−1)
k

q−1
∏

i=0

(k + i(k − 1)) 6

(

n

j

)

q(k−1)
k

(k − 1)q(q + 1)! .

9



Thus,

Pr
[

deg(x) > k + q(n/j)(k−1)/k
]

= Pr
[

X − k > q(k − 1)(n/j)(k−1)/k
]

6
E [Xq]

(q(k − 1)(n/j)(k−1)/k)
q

6 (q + 1)!q−q = O (q
√
q exp(−q)) .

3 Basic properties of random k-trees

In this section we prove that random k-trees exhibit two important properties observed

in real-world networks: low diameter and large clustering coefficient. We also prove

that random k-trees do not expand well, confirming our claim in the introduction that

random k-trees are poorly connected graphs and thus existing techniques do not apply.

Let G(0), G(1), . . . be defined as in Definition 1.1.

Definition. The clustering coefficient of a graph G, written cc(G), is defined as

cc(G) =
1

|V (G)|
∑

u∈V (G)

|〈N(u)〉|
(

deg(u)
2

) ,

where |〈N(u)〉| denotes the number of edges xy such that both x and y are neighbors of

u.

Proposition 5. For every positive integer n, deterministically, the clustering coefficient

of G(n) is at least 1/2.

Proof. Let u be a vertex of G = G(n). It is not hard to check that |〈N(u)〉| = (k −
1)(deg(u)− k/2), and since deg(u) > k we get

|〈N(u)〉|
(

deg(u)
2

) >
k

deg(u)
.

Using the Cauchy-Schwarz inequality we get

cc(G) >
1

|V (G)|
∑

u∈V (G)

k

deg(u)
>

k

n + k
· (n+ k)2

2|E(G)| >
1

2
.

For proving random k-trees have logarithmic diameter we will need a known result

about random d-ary recursive trees.
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Definition (Random d-ary recursive tree). Let d be a positive integer. Build a sequence

T (0), T (1), . . . of rooted random trees as follows. The tree T (0) has just one vertex, the

root. For each 1 ≤ t ≤ n, T (t) is obtained from T (t− 1) as follows: a leaf of T (t− 1) is

chosen uniformly at random and gives birth to d new children. The tree T (n) is called a

random d-ary recursive tree on dn+ 1 vertices.

Theorem 4 ([13],Theorem 6.47). Let α be the unique solution in (d,∞) of

α(d− 1) log

(

de

α(d− 1)

)

= 1 .

Let Hn denote the height of a random d-ary recursive tree on dn+1 vertices. There exists

a constant c > 0 such that for any η,

Pr [Hn > α logn + η] = O(e−cη) .

The following proposition implies that with high probability the diameter of G(n) is

O(log n).

Proposition 6. Whp G(n) has the following property: let uhuh−1 · · ·u0 be an arbitrary

path such that ui is born later than ui−1 for all i; then h = O(logn).

Proof. We inductively define a notion of draft for vertices and k-cliques of G(n). The

draft of the vertices of G(0) as well as the k-clique they form equals 0. The draft of every

k-clique equals the maximum draft of its vertices. Whenever a new vertex is born and is

joined to a k-clique, the draft of the vertex equals the draft of the k-clique plus one. It is

easy to see that if xy ∈ E(G(n)) and x is born later than y, then draft(x) > draft(y) + 1.

In particular, if x is a vertex of G(n) and there is a path x = xh, xh−1, . . . , x1, x0 in G(n)

such that xj is born later than xj−1 for each j, then draft(x) > h. Hence we just need to

show that with high probability the draft of each k-clique of G(n) is O(logn).

We define an auxiliary tree whose nodes correspond to the k-cliques of G(n), in such a

way that the depth of each node in this tree equals the draft of its corresponding k-clique.

Start with a single node corresponding to G(0). Whenever a new vertex x is born and

is joined to a k-clique C, k new k-cliques are created. In the auxiliary tree, add these

to the set of children of C. So, the auxiliary tree evolves as follows: in every round a

node is chosen uniformly at random and gives birth to k new children. Hence, the height

of the auxiliary tree after n rounds is stochastically smaller than that of a random k-ary

recursive tree on 1 + kn nodes, whose height is O(log n) whp by Theorem 4.

Definition. The vertex expansion of a graph G (also known as the vertex isoperimetric

number of G), written α(G), is defined as

α(G) = min

{ |∂S|
|S| : S ⊆ V (G), 0 < |S| ≤ |V (G)|/2

}

,

11



where ∂S denotes the set of vertices in V (G) \ S that have a neighbor in S.

Definition. The conductance of a graph G, written Φ(G), is defined as

Φ(G) = min

{

e(S, V (G) \ S)
vol(S)

: S ⊆ V (G), 0 < vol(S) 6 vol(V (G))/2

}

,

where e(S, V (G)\S) denotes the number of edges between S and V (G)\S, and vol(S) =
∑

u∈S deg(u) for every S ⊆ V (G).

Proposition 7. Deterministically G(n) has vertex expansion O (k/n), and whp its con-

ductance is O
(

log n · n−1/k
)

.

Proof. Let G = G(n). Since G has treewidth k, by [29, Lemma 5.3.1] there exists a

partition (A,B,C) of V (G) such that

1. |C| = k + 1,

2. (n− 1)/3 6 |A| 6 2(n− 1)/3 and (n− 1)/3 6 |B| 6 2(n− 1)/3, and

3. there is no edge between A and B.

At least one of A and B, say A, has size less than (n+ k)/2. Then

α(G) 6
|∂A|
|A| 6

k + 1

(n− 1)/3
= O(k/n) .

At least one of A and B, say B, has volume less than vol(G)/2. Then since all vertices

in G have degrees at least k,

Φ(G) 6
e(B,A ∪ C)

vol(B)
6

e(B,C)

k|B| 6
(k + 1)∆(G)

k(n− 1)/3
= O(∆(G)/n) .

Hence to prove Φ(G) = O
(

log n · n−1/k
)

it suffices to show that with high probability we

have

∆(G) 6 k + (2 logn)n1−1/k .

Let q = ⌊2 logn⌋ and let x be a vertex born in one of the rounds 1, 2, . . . , n. By Lemma 4,

Pr
[

deg(x) > k + qn1−1/k
]

= O(q
√
q exp(−q)) = o(1/n) .

An argument similar to the proof of Lemma 4 shows that the probability that a vertex in

G(0) has degree greater than k+qn1−1/k is o(1/n) as well. A union bound over all vertices

shows that with high probability we have ∆(G) 6 k + (2 logn)n1−1/k, as required.
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4 Proof of Theorem 1

Once we have the following lemma, our problem reduces to proving a structural result for

random k-trees.

Lemma 8. Let χ and τ be fixed positive integers. Let G be an n-vertex graph and let

Σ ⊆ V (G) with |Σ| = n − o(n) be such that for every pair of vertices u, v ∈ Σ there

exists a (u, v)-path uu1u2 · · ·ul−1v such that l 6 χ and for every 0 6 i 6 l − 1 we have

min{deg(ui), deg(ui+1)} 6 τ (where we define u0 = u and ul = v). If a random vertex in

G knows a rumor, then whp after 6τ(χ + log n) rounds of the Push-Pull protocol, at least

n− o(n) vertices will know the rumor.

Proof. The proof is along the lines of that of [15, Theorem 2.2]. We show that given

any u, v ∈ Σ, if u knows the rumor then with probability at least 1 − o (n−2) after

6τ(χ+log n) rounds v will know the rumor. The lemma follows by using the union bound

and noting that a random vertex lies in Σ with high probability. Consider the (u, v)-path

uu1u2 · · ·ul−1v promised by the hypothesis. We bound from below the probability that

the rumor is passed through this path.

For every 0 ≤ i ≤ l − 1, the number of rounds taken for the rumor to pass from ui to

ui+1 is a geometric random variable with success probability at least 1/τ (if deg(ui) 6 τ ,

this is the number of rounds needed for ui to push the rumor along the edge, and if

deg(ui+1) 6 τ , this is the number of rounds needed for ui+1 to pull the rumor along the

edge). The random variables corresponding to distinct edges are mutually independent.

Hence the probability that the rumor is not passed in 6τ(χ + log n) rounds is at most

the probability that the number of heads in a sequence of 6τ(χ + log n) independent

biased coin flips, each having probability 1/τ of being heads, is less than l. Let X denote

the number of heads in such a sequence. Then using the Chernoff bound (see, e.g., [33,

Theorem 4.2]) and noting that E [X ] = 6(χ+ log n) we get

Pr [X < l] 6 Pr [X ≤ E [X ] /6] ≤ exp(−(5/6)2E [X ] /2) ≤ exp(−(5/6)2(6 logn)/2) ,

which is o (n−2), as required.

Let f(n) = o(log logn) be an arbitrary function going to infinity with n, and let

m =

⌈

n

f(n)3/(k−1)(log n)2/(k−1)

⌉

.

Also let q = ⌈4 log log n⌉ and let

τ = 2k + q(n/m)1−1/k . (1)

13



By Proposition 6, whp a random k-tree on n+k vertices has diameter O(log n). Theorem 1

thus follows from Lemma 8 and the following structural result, which we prove in the rest

of this section.

Lemma 9. Let G be an (n + k)-vertex random k-tree. Whp there exists Σ ⊆ V (G)

satisfying the conditions of Lemma 8 with τ defined in (1) and χ = O(logn + diam(G)).

For the rest of this section, G is an (n + k)-vertex random k-tree. Recall from Defi-

nition 1.1 that G = G(n), where G(0), G(1), . . . is the random k-tree process. Consider

the graph G(m), which has k + m vertices and mk + 1 many k-cliques. For an edge e

of G(m), let N(e) denote the number of k-cliques of G(m) containing e. We define a

spanning forest F of G(m) as follows: for every 1 6 t 6 m, if the vertex x born in round

t is joined to the k-clique C, then in F , x is joined to a vertex u ∈ V (C) such that

N(xu) = max
v∈V (C)

N(xv) .

Note that F has k trees and the k vertices of G(0) lie in distinct trees. Think of these

trees as rooted at these vertices. The tree obtained from F by merging these k vertices

is the ‘highway system’ described in the sketch of the proof of Theorem 1. Informally

speaking, the proof has three parts: first, we show that this tree has a small height

(Lemma 10); second, we show that each edge in this tree quickly exchanges the rumor

with a reasonably large probability (Lemma 12); and finally we show that almost all

vertices in G−G(m) have quick access to and from F (Lemma 13).

Let LOG denote the event ‘each tree in F has height O(log n).’ The following lemma

is an immediate corollary of Proposition 6.

Lemma 10. With high probability LOG happens.

We prove Lemma 9 conditional on the event LOG. In fact, we prove it for any G(m)

that satisfies LOG. Let G1 be an arbitrary instance of G(m) that satisfies LOG. So, G1

and F are fixed in the following, and all randomness refers to rounds m + 1, . . . , n. The

following deterministic lemma will be used in the proof of Lemma 12.

Lemma 11. Assume that xy ∈ E(F ) and x is born later than y. If the degree of x in G1

is greater than 2k − 2, then N(xy) > (k2 − k)/2.

Proof. Assume that x is joined to u1, . . . , uk when it is born, and that v1, v2, . . . , vk−1, . . .

are the neighbors of x that are born later than x, in the order of birth. Let Ψ denote

the number of pairs (uj, C), where 1 6 j 6 k, and C is a k-clique in G1 containing the

edge xuj . Consider the round in which vertex x is born and is joined to u1, . . . , uk. For
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every j ∈ {1, . . . , k}, the vertex uj is contained in k− 1 new k-cliques, so in this round Ψ

increases by k(k − 1). For each i ∈ {1, . . . , k − 1}, consider the round in which vertex vi
is born. This vertex is joined to x and k− 1 neighbors of x. At this round x has neighbor

set {u1, . . . , uk, v1, . . . , vi−1}. Thus at least k− i of the uj’s are joined to vi in this round.

Each vertex uj that is joined to vi in this round is contained in k − 2 new k-cliques that

contain x as well, so in this round Ψ increases by at least (k − i)(k − 2). Consequently,

we have

Ψ > k(k − 1) +
k−1
∑

i=1

(k − i)(k − 2) = k2(k − 1)/2 .

By the pigeonhole principle, there exists some ℓ ∈ {1, . . . , k} such that the edge xuℓ is

contained in at least (k2 − k)/2 many k-cliques, and this completes the proof.

A vertex of G is called modern if it is born later than the end of round m, and is

called traditional otherwise. In other words, vertices of G1 are traditional and vertices

of G − G1 are modern. We say edge uv ∈ E(G) is fast if at least one of the following is

true: deg(u) 6 τ , or deg(v) 6 τ , or u and v have a common neighbor w with deg(w) 6 τ .

For an edge uv ∈ E(F ), let pS(uv) denote the probability that uv is not fast, and let pS
denote the maximum of pS over all edges of F .

Lemma 12. We have pS = o(1/(f(n) logn)).

Proof. Let xy ∈ E(F ) be arbitrary. By symmetry we may assume that x is born later

than y. By Lemma 11, at least one of the following is true: vertex x has less than 2k − 1

neighbors in G1, or N(xy) > (k2 − k)/2. So we may consider two cases.

• Case 1: vertex x has less than 2k − 1 neighbors in G1. In this case vertex x lies in

at most k2 − 2k + 2 many k-cliques of G1. Assume that x has A neighbors in G1

and lies in B many k-cliques in G1. Let

X = Urn

(

B, km+ 1− B,

[

k 0

1 k − 1

]

, n−m

)

.

Then by Proposition 3 the degree of x is distributed as A + (X −B) /(k − 1). By

Proposition 2,

E [Xq] 6 (1 + o(1))

(

k(n−m)

km+ 1

)

q(k−1)
k

q−1
∏

i=0

(B + i(k − 1))

6 (1 + o(1))
( n

m

)

q(k−1)
k

(k − 1)q
q−1
∏

i=0

(k + i)

6 (k − 1)q(k + q)!
( n

m

)

q(k−1)
k

,
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where we have used B 6 k(k − 1) for the second inequality. Therefore,

Pr
[

deg(x) > 2k + q(n/m)
k−1
k

]

6 Pr
[

X > (k − 1)q(n/m)
k−1
k

]

6
E [Xq]

(k − 1)qqq(n/m)
q(k−1)

k

= O
(

(k + q)k+q√q

qq exp(k + q)

)

= o

(

1

f(n) logn

)

.

• Case 2: N(xy) > (k2 − k)/2. In this case we bound from below the probabil-

ity that there exists a modern vertex w that is adjacent to x and y and has de-

gree at most τ . We first bound from above the probability that x and y have

no modern common neighbors. For this to happen, none of the k-cliques con-

taining x and y must be chosen in rounds m + 1, . . . , n. This probability equals

Pr [Urn(N(xy), mk + 1−N(xy), k, n−m) = N(xy)]. Since N(xy) > (k2 − k)/2,

by Proposition 1 we have

Pr [Urn(N(xy), mk + 1−N(xy), k, n−m) = N(xy)] 6

(

m+ 1

n+ 1

)
k−1
2

,

which is o (1/(f(n) logn)).

Now, assume that x and y have a modern common neighbor w. If there are multiple

such vertices, choose the one that is born first. Since w appears later than round

m, by Lemma 4,

Pr
[

deg(w) > k + q(n/m)(k−1)/k
]

= O (q
√
q exp(−q)) = o

(

1

f(n) logn

)

.

Enumerate the k-cliques of G1 as C1, . . . , Cmk+1. Then choose r1 ∈ C1, . . . , rmk+1 ∈
Cmk+1 arbitrarily, and call them the representative vertices. Starting from G1, when

modern vertices are born in roundsm+1, . . . , n untilG is formed, every clique Ci ‘grows’ to

a random k-tree with a random number of vertices, which is a subgraph of G. Enumerate

these subgraphs asH1, . . . , Hmk+1, and call them the pieces. More formally, H1, . . . , Hmk+1

are induced subgraphs of G such that a vertex v is in V (Hj) if and only if every path

connecting v to a traditional vertex intersects V (Cj). In particular, V (Cj) ⊆ V (Hj) for

all j ∈ {1, . . . , mk + 1}. Note that the Hj’s may intersect, as a traditional vertex may lie

in more than one Cj, however every modern vertex lies in a unique piece.

A traditional vertex is called nice if it is connected to some vertex in G(0) via a path

of fast edges. Since F has height O(logn) and each edge of F is fast with probability at

least 1 − pS, the probability that a given traditional vertex is not nice is O(pS log n) by

the union bound. A piece Hj is called nice if all its modern vertices have degrees at most

τ , and the vertex rj is nice. A modern vertex is called nice if it lies in a nice piece. A

vertex/piece is called bad if it is not nice.
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Lemma 13. The expected number of bad vertices is o(n).

Proof. The total number of traditional vertices is k + m = o(n) so we may just ignore

them in the calculations below. Let η = nf(n)/m = o(log3 n). Say piece Hj is sparse if

|V (Hj)| 6 η + k. We first bound the expected number of modern vertices in non-sparse

pieces. Observe that the number of modern vertices in a given piece is distributed as

X = (Urn(1, km, k, n − m) − 1)/k. Using Proposition 1 we get E [X2] 6 2kn2/m2. By

the second moment method, for every t > 0 we have

Pr [X > t] 6
E [X2]

t2
6

2kn2

m2t2
.

The expected number of modern vertices in non-sparse pieces is thus at most

(km+ 1)

∞
∑

i=0

(2i+1η)Pr
[

2iη < X 6 2i+1η
]

6

∞
∑

i=0

(2i+1η)(km+ 1)
2kn2

m2η222i

6 O
(

n2

mη

) ∞
∑

i=0

2−i = O
(

n2

mη

)

,

which is o(n).

We now bound the expected number of modern vertices in sparse bad pieces. For

bounding this from above we find an upper bound for the expected number of bad pieces,

and multiply by η. A piece Hj can be bad in two ways:

(1) the representative vertex rj is bad: the probability of this isO (pS log n). Therefore,

the expected number of pieces that are bad due to this reason is O (mkpS log n), which is

o(n/η) by Lemma 12.

(2) there exists a modern vertex in Hj with degree greater than τ : the probability that

a given modern vertex has degree greater than τ is O
(

q
√
q exp(−q)

)

by Lemma 4. So

the average number of modern vertices with degree greater than τ is O
(

nq
√
q exp(−q)

)

.

Since every modern vertex lies in a unique piece, the expected number of pieces that are

bad because of this reason is bounded by O
(

nq
√
q exp(−q)

)

= o(n/ log3 n).

So the expected number of bad pieces is o(n/η + n/ log3 n), and the expected number

of modern vertices in sparse bad pieces is o(n+ ηn/ log3 n) = o(n).

We now prove Lemma 9, which concludes the proof of Theorem 1.

Proof of Lemma 9. Let Σ denote the set of nice modern vertices. By Lemma 13 and using

Markov’s inequality, we have |Σ| = n− o(n) whp. Let {a1, . . . , ak} denote the vertex set

of G(0). Using an argument similar to the proof of Lemma 12, it can be proved that
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given 1 6 i < j 6 k, the probability that edge aiaj is not fast is o(1). Since the total

number of such edges is a constant, whp all such edges are fast. Let u and v be nice

modern vertices, and let ru and rv be the representative vertices of the pieces containing

them, respectively. Since the piece containing u is nice, there exists a (u, ru)-path whose

vertices except possibly ru all have degrees at most τ . The length of this path is at

most diam(G). Since ru is nice, for some 1 6 i 6 n there exists an (ru, ai)-path in F

consisting of fast edges. Appending these paths gives a (u, ai)-path with length at most

diam(G) + O(logn) such that for every pair of consecutive vertices in this path, one of

them has degree at most τ . Similarly, for some 1 6 j 6 n there exists a (v, aj)-path of

length O(log n+diam(G)), such that one of every pair of consecutive vertices in this path

has degree at most τ . Since the edge aiaj is fast whp, we can build a (u, v)-path of length

O(log n+ diam(G)) of the type required by Lemma 8, and this completes the proof.

5 Proof of Theorem 2

Definition (s-barrier). A pair {C1, C2} of disjoint k-cliques in a connected graph is an s-

barrier if (i) the set of edges between C1 and C2 is a cut-set, i.e. deleting them disconnects

the graph, and (ii) the degree of each vertex in V (C1) ∪ V (C2) is at least s.

Observe that if G has an s-barrier, then for any starting vertex, whp the Push-Pull

protocol needs at least Ω(s) rounds to inform all vertices.

Lemma 14. The graph G(n) has an Ω(n1−1/k)-barrier with probability Ω(n1/k−k).

Proof. Let u1, . . . , uk be the vertices of G(0), and let v1, . . . , vk be the vertices of G(k)−
G(0) in the order of appearance. We define two events. Event A is that for every 1 6 i 6 k,

when vi appears, it attaches to v1, v2, . . . , vi−1, ui, ui+1, . . . , uk; and for each 1 6 i, j 6 k,

ui and vj have no common neighbor in G(n) − G(k). Event B is that all vertices of

G(k) have degree Ω(n(k−1)/k) in G(n). Note that if A and B both happen, then the pair

{u1u2 . . . uk, v1v2 . . . vk} is an Ω(n(k−1)/k)-barrier in G(n). To prove the lemma we will

show that Pr [A] = Ω(n1/k−k) and Pr [B|A] = Ω(1).

For A to happen, first, the vertices v1, . . . , vk must choose the specified k-cliques,

which happens with constant probability. Moreover, the vertices appearing after round k

must not choose any of the k2 − 1 many k-cliques that contain both ui’s and vj ’s. Since
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1− y > e−y−y2 for every y ∈ [0, 1/4],

Pr [A] = Ω(Pr
[

Urn(k2 − 1, 2, k, n− k) = k2 − 1
]

)

= Ω

(

n−k−1
∏

i=0

(

2 + ik

k2 + 1 + ik

)

)

> Ω

(

4k−1
∏

i=0

(

2 + ik

k2 + 1 + ik

) n−k−1
∏

i=4k

(

1− k2 − 1

ik

)

)

> Ω

(

exp

(

−
n−k−1
∑

i=4k

{

k2 − 1

ik
+

(

k2 − 1

ik

)2
}))

which is Ω(n1/k−k) since

n−k−1
∑

i=4k

k2 − 1

ik
6 (k − 1/k) logn+O(1) and

n−k−1
∑

i=4k

(

k2 − 1

ik

)2

= O(1) .

Conditional on A and using an argument similar to that in the proof of Proposi-

tion 3, the degree of each of the vertices u1, . . . , uk, v1, . . . , vk in G(n) is at least k +

(Urn(1, 1,

[

k 0

1 k − 1

]

, n−k)−1)/(k−1). By [16, Proposition 16], there exists δ > 0 such

that

Pr

[

Urn(1, 1,

[

k 0

1 k − 1

]

, n− k) < δn(k−1)/k

]

< 1/(2k + 1) .

By the union bound, the probability that all vertices u1, . . . , uk, v1, . . . , vk have degrees at

least δn(k−1)/k/(k − 1) is at least 1/(2k + 1), hence Pr [B|A] > 1/(2k + 1) = Ω(1).

Let f(n) = o(log log n) be any function going to infinity with n, and also let m =
⌈

f(n)n1−k/(k2+k−1)
⌉

. (Note that the value of m is different from that in Section 4, al-

though its role is somewhat similar.) Consider the random k-tree process up to round m.

Enumerate the k-cliques of G(m) as C1, . . . , Cmk+1. Starting from G(m), when new ver-

tices are born in rounds m+1, . . . , n until G = G(n) is formed, every clique Ci ‘grows’ to

a random k-tree with a random number of vertices, which is a subgraph of G. Enumerate

these subgraphs as H1, . . . , Hmk+1, and call them the pieces. We say a piece is moderate

if its number of vertices is between n/(mf(n)) and nf(n)/m. Note that the number of

vertices in a piece has expected value Θ(n/m). The following lemma is proved by showing

this random variable does not deviate much from its expected value.

Lemma 15. With high probability, there are o(m) non-moderate pieces.
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Proof. We prove the first piece, H1, is moderate whp. By symmetry, this would imply

that the average number of non-moderate pieces is o(m). By Markov’s inequality, this

gives that whp there are o(m) non-moderate pieces. Let X denote the number of vertices

of H1. Note that X is distributed as k + Urn(1, km, k, n − m); so its expected value is

k + n−m
1+km

= Θ(n/m). By Markov’s inequality, Pr [X > nf(n)/m] = o(1).

For bounding Pr [X < n/(mf(n))], we use an alternative way to define the random

variable Urn(1, km, k, n−m) (see [26, page 181]): assume Z is a beta random variable with

parameters 1/k and m. Then X−k, which has the same distribution as Urn(1, km, k, n−
m), is distributed as a binomial random variable with parameters n − m and Z. Note

that

Pr [Z < 3/(mf(n))] =
Γ(m+ 1/k)

Γ(m)Γ(1/k)

∫ 3/(mf(n))

0

x1/k−1(1− x)m−1dx

<
m1/k

Γ(1/k)

∫ 3/(mf(n))

0

x1/k−1dx =
31/kk

Γ(1/k)f(n)1/k
= o(1) ,

where we have used the fact Γ(m+ 1/k) < Γ(m)m1/k which follows from [30, inequality

(2.2)]. On the other hand, the Chernoff bound (see, e.g., [33, Theorem 4.2]) gives

Pr [X < n/(mf(n))|Z > 3/(mf(n))] 6 Pr [Bin(n−m, 3/(mf(n))) < n/(mf(n))]

< exp(−3(n−m)/(8mf(n))) = o(1) ,

thus Pr [X < n/(mf(n))] = o(1).

Proof of Theorem 2. Consider an alternative way to generate G(n) from G(m): first, we

determine how many vertices each piece has, and then we expose the structure of the

pieces. Let Y denote the number of moderate pieces. By Lemma 15 we have Y =

Ω(m) whp. We prove the theorem conditional on Y = y, where y = Ω(m) is otherwise

arbitrary. Note that after the sizes of the pieces are exposed, what happens inside each

piece in rounds m + 1, . . . , n is mutually independent from other pieces. Let H be a

moderate piece with n1 vertices. By Lemma 14, the probability that H has an Ω(n
1−1/k
1 )-

barrier is Ω(n
1/k−k
1 ). Since n/(mf(n)) 6 n1 6 nf(n)/m, the probability that H has a

Ω((n/(mf(n))1−1/k)-barrier is Ω((nf(n)/m)1/k−k). Since there are y = Ω(m) moderate

pieces in total, the probability that no moderate piece has an Ω
(

(n/(mf(n)))1−1/k
)

-barrier

is at most

(1− Ω((nf(n)/m)1/k−k))y 6 exp(−Ω(f(n))) = o(1) ,

so whp there exists an Ω
(

n(k−1)/(k2+k−1)f(n)−2
)

-barrier in G(n), as required.
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6 Proof of Theorem 3

In this section we analyze the Push-Pull protocol on random k-Apollonian networks. Since

these networks are a sub-family of random k-trees, we can reuse the proof techniques in

Section 4 to bound the time needed to inform almost all vertices. First, we formally define

the random k-Apollonian process.

Definition (Random k-Apollonian process). Let k be a positive integer. Build a sequence

A(0), A(1), . . . of random graphs as follows. The graph A(0) is just a clique on k vertices.

This k-clique is marked as active. For each 1 ≤ t ≤ n, A(t) is obtained from A(t − 1)

as follows: an active k-clique of A(t− 1) is chosen uniformly at random, a new vertex is

born and is joined to all vertices of the chosen k-clique. The chosen k-clique is marked

as non-active, and all the new k-cliques are marked as active in A(t). The graph A(n) is

called a random k-Apollonian network (k-RAN) on n+ k vertices.

We first prove a counterpart of Lemma 4 for k-RANs.

Lemma 16. Let 1 6 j 6 n and let q be a positive integer. Let x denote the vertex

born in round j. Conditional on any A(j), the probability that x has degree greater than

k + q(n/j)(k−2)/(k−1) in A(n) is O
(

q
√
q exp(−q)

)

.

Proof. Let X = Urn

(

k, (k − 1)(j − 1),

[

k − 1 0

1 k − 2

]

, n− j

)

. An argument similar

to the proof of Proposition 3 gives that the degree of x in A(n) is distributed as k +

(X − k) /(k − 2). By Proposition 2,

E [Xq] 6 (1+o(1))

(

(k − 1)(n− j)

(k − 1)j + 1

)

q(k−2)
k−1

q−1
∏

i=0

(k + i(k − 2)) 6

(

n

j

)

q(k−2)
k−1

(k−2)q(q+1)!.

Thus,

Pr
[

deg(x) > k + q(n/j)(k−2)/(k−1)
]

= Pr
[

X − k > (k − 2)q(n/j)(k−2)/(k−1)
]

6
E [Xq]

((k − 2)q(n/j)(k−2)/(k−1))
q

6 (q + 1)!q−q = O (q
√
q exp(−q)) .

Fix k > 2 and let f(n) = o(log log n) be an arbitrary function going to infinity with

n, and let

m =

⌈

n

(logn)2/(k−1)f(n)(2k−2)/(k2−2k)

⌉

.
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Finally, let q = ⌈4 log logn⌉ and let

τ = 2k + q(n/m)(k−2)/(k−1) . (2)

An argument similar to the proof of Lemma 18 gives that whp a k-RAN on n + k

vertices has diameter O(log n). Theorem 3 thus follows from Lemma 8 and the following

structural result, which we prove in the rest of this section.

Lemma 17. Let A be an (n + k)-vertex k-RAN. Whp there exists Σ ⊆ V (A) satisfying

the conditions of Lemma 8 with τ defined in (2) and χ = O(log n+ diam(A)).

The proof of Lemma 17 is along the lines of that of Lemma 9. For the rest of this

section, A = A(n) is an (n+k)-vertex k-RAN. Consider the graph A(m), which has k+m

vertices and m(k − 1) + 1 active k-cliques. For any edge e of A(m), let N∗(e) denote the

number of active k-cliques of A(m) containing e. Note that, since k > 2, for each edge e,

the number of active k-cliques containing e does not decrease as the k-RAN evolves. We

define a spanning forest F of A(m) as follows: at round 0, F has k isolated vertices, i.e.

the vertices of A(0); then for every 1 6 t 6 m, if the vertex x born in round t is joined to

the k-clique C, then in F , x is joined to a vertex u ∈ V (C) such that

N∗(xu) = max
v∈V (C)

N∗(xv) .

Note that F has k trees and the k vertices of A(0) lie in distinct trees. Let LOG denote

the event ‘each tree in F has height O(log n).’

Lemma 18. With high probability LOG happens.

Proof. We prove that whp every path uhuh−1 · · ·u0 in A(n) such that ui is born later than

ui−1 for all i, has length O(logn). The proof is very similar to that of Proposition 6, the

only difference being that the built auxiliary tree is indeed a random k-ary recursive tree,

whose height is whp O(logn) by Theorem 4.

We prove Lemma 17 conditional on the event LOG. In fact, we prove it for any A(m)

that satisfies LOG. Let A1 be an arbitrary instance of A(m) that satisfies LOG. So, A1

and F are fixed in the following, and all randomness refers to rounds m + 1, . . . , n. The

following deterministic lemma will be used in the proof of Lemma 20.

Lemma 19. Assume that xy ∈ E(F ) and x is born later than y. If the degree of x in A1

is at least 2k − 1, then N∗(xy) > (k − 1)2/2.
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Proof. Assume that x is joined to u1, . . . , uk when it is born, and that v1, v2, . . . , vk−1, . . .

are the neighbors of x that are born later than x, in the order of birth. Let Ψ denote the

number of pairs (uj, C), where C is an active k-clique in A1 with xuj ⊆ E(C). Consider

the round in which vertex x is born and is joined to u1, . . . , uk. For every j ∈ {1, . . . , k},
the edge xuj is contained in k − 1 new active k-cliques, so in this round Ψ increases by

k(k − 1). For each i ∈ {1, . . . , k − 1}, consider the round in which vertex vi is born. At

least k− i of the uj ’s are joined to vi in this round. Each vertex uj that is joined to vi in

this round is contained in k− 2 new k-cliques that contain x, and one k-clique containing

uj is deactivated. Hence in this round Ψ increases by at least (k−i)(k−3). Consequently,

right after vk−1 is born, we have

Ψ > k(k − 1) +

k−1
∑

i=1

(k − i)(k − 3) = (k − 1)2k/2 .

By the pigeonhole principle, there exists some ℓ ∈ {1, . . . , k} such that the edge xuℓ

is contained in at least (k − 1)2/2 active k-cliques, and this completes the proof, as the

number of active k-cliques containing xuℓ will not decrease later.

A vertex of A is called modern if it is born later than the end of round m, and is

called traditional otherwise. In other words, vertices of A1 are traditional and vertices

of A − A1 are modern. We say edge uv ∈ E(A) is fast if at least one of the following is

true: deg(u) 6 τ , or deg(v) 6 τ , or u and v have a common neighbor w with deg(w) 6 τ .

For an edge uv ∈ E(F ), let pS(uv) denote the probability that uv is not fast, and let pS
denote the maximum of pS over all edges of F .

Lemma 20. We have pS = o(1/(f(n) logn)).

Proof. The proof is similar to that of Lemma 12. Let xy ∈ E(F ) be arbitrary. By

symmetry we may assume that x is born later than y. By Lemma 19, at least one of the

following is true: vertex x has less than 2k − 1 neighbors in A1, or N
∗(xy) > (k − 1)2/2.

So we may consider two cases.

• Case 1: vertex x has less than 2k− 1 neighbors in A1. In this case x lies in at most

k+(k−2)2 many active k-cliques of A1. Suppose that x has D neighbors in A1 and

lies in B many active k-cliques in A1. Let

X = Urn

(

B, (k − 1)m+ 1−B,

[

k − 1 0

1 k − 2

]

, n−m

)

.

Then by an argument similar to the proof of Proposition 3, the degree of x is
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distributed as D + (X − B) /(k − 2). By Proposition 2,

E [Xq] 6 (1 + o(1))

(

(k − 1)(n−m)

(k − 1)m+ 1

)

q(k−2)
k−1

q−1
∏

i=0

(B + i(k − 2))

6 O
(

( n

m

)

q(k−2)
k−1

(k − 2)q(k + q)!

)

,

where we have used B 6 k(k − 2). Therefore,

Pr
[

deg(x) > 2k + q(n/m)
k−2
k−1

]

6 Pr
[

X > (k − 2)q(n/m)
k−2
k−1

]

6
E [Xq]

(k − 2)qqq(n/m)
q(k−2)
k−1

= O
(

(k + q)!

qq

)

= o

(

1

f(n) logn

)

.

• Case 2: N∗(xy) > (k − 1)2/2. In this case we bound from below the probability

that there exists a modern vertex w that is adjacent to x and y and has degree at

most τ . We first bound from above the probability that x and y have no modern

common neighbors. For this to happen, none of the k-cliques containing x and y

must be chosen in rounds m+ 1, . . . , n. This probability equals

p := Pr [Urn(N∗(xy), m(k − 1) + 1−N∗(xy), k − 1, n−m) = N∗(xy)] .

Since N∗(xy) > (k − 1)2/2, by Proposition 1 we have

p 6

(

m+ 1

n

)(k−1)/2

= o

(

1

f(n) log n

)

.

Now, assume that x and y have a modern common neighbor w. If there are multiple

such vertices, choose the one that is born first. Since w appears later than round

m, by Lemma 16,

Pr
[

deg(w) > k + q(n/m)(k−2)/(k−1)
]

= O (q
√
q exp(−q)) = o

(

1

f(n) logn

)

.

Enumerate the k-cliques of A1 as C1, C2, . . . , and Cm(k−1)+1. Then choose r1 ∈ C1, . . . ,

rm(k−1)+1 ∈ Cm(k−1)+1 arbitrarily, and call them the representative vertices. Starting from

A1, when modern vertices are born in rounds m + 1, . . . , n until A is formed, every

clique Ci ‘grows’ to a k-RAN with a random number of vertices, which is a subgraph

of A. Enumerate these subgraphs as H1, . . . , Hm(k−1)+1, and call them the pieces. More

formally, H1, . . . , Hm(k−1)+1 are induced subgraphs of A such that a vertex v is in V (Hj)

if and only if every path connecting v to a traditional vertex intersects V (Cj).

24



A traditional vertex is called nice if it is connected to some vertex in A(0) via a path

of fast edges. Since F has height O(logn) and each edge of F is fast with probability at

least 1 − pS, the probability that a given traditional vertex is not nice is O(pS log n) by

the union bound. A piece Hj is called nice if all its modern vertices have degrees at most

τ , and the vertex rj is nice. A modern vertex is called nice if it lies in a nice piece. A

vertex/piece is called bad if it is not nice.

Lemma 21. The expected number of bad vertices is o(n).

Proof. The proof is very similar to that of Lemma 13, except we use Lemmas 16 and 20

instead of Lemmas 4 and 12, respectively.

The proof of Lemma 17 is exactly the same as that of Lemma 9, except we use

Lemmas 20 and 21 instead of Lemmas 12 and 13, respectively. This concludes the proof

of Theorem 3.
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[31] Hosam M. Mahmoud. Pólya urn models and connections to random trees: A review.

Journal of the Iranian Statistical Society, 2(1):53–114, 2003.

[32] Milena Mihail, Christos H. Papadimitriou, and Amin Saberi. On certain connectivity

properties of the internet topology. In Proc. 44th Symp. Foundations of Computer

Science (FOCS), pages 28–35, 2003.

[33] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press,

Cambridge, 1995.

[34] M. Mungan. Comment on “apollonian networks: Simultaneously scale-free, small

world, Euclidean, space filling, and with matching graphs”. Phys. Rev. Lett.,

106:029802, Jan 2011.
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