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Abstract—We consider load balancing in a network of caching
servers delivering contents to end users. Randomized load
balancing via the so-called power of two choices is a well-
known approach in parallel and distributed systems that reduces
network imbalance. In this paper, we propose a randomized
load balancing scheme which simultaneously considers cache size
limitation and proximity in the server redirection process.

Since the memory limitation and the proximity constraint
cause correlation in the server selection process, we may not
benefit from the power of two choices in general. However, we
prove that in certain regimes, in terms of memory limitation
and proximity constraint, our scheme results in the maximum
load of order Θ(log log n) (here n is the number of servers and
requests), and at the same time, leads to a low communication
cost. This is an exponential improvement in the maximum load
compared to the scheme which assigns each request to the nearest
available replica. Finally, we investigate our scheme performance
by extensive simulations.
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I. INTRODUCTION

A. Problem Motivation

Advancement of technology leads to the spread of smart
multimedia-friendly communication devices to the masses
which causes a rapid growth of demands for data commu-
nication [1]. Although Telcos have been spending hugely
on telecommunication infrastructures, they cannot keep up
with this data demand explosion. Caching predictable data in
network off-peak hours, near end users, has been proposed as
a promising solution to this challenge. This approach has been
used extensively in content delivery networks (CDNs) such as
Akamai, Azure, Amazon CloudFront, etc. [2], [3], and mobile
video delivery [4]. In this approach, a cache network is usually
referred to as a set of caching servers that are connected over
a network, giving content delivery service to end users.

In cache networks, load balancing is one of the most
important challenges when assigning requests to servers. This
assignment strategy is implemented either at network-side
or client-side. In the first approach there is a centralized
authority which maps requests to servers, while balancing out

the load. This authority employs network status information
to optimally allocate requests to servers, which often involves
complex algorithms. However, in the latter, the clients choose
their favorite servers in a distributed fashion. In this paper we
focus on the distributed server selection approach.

Randomized load balancing via the so-called “power of
two choices” is a well-investigated paradigm in parallel and
distributed settings [5], [6], [7], [8]. In this approach, upon
arrival of a request, the corresponding user will query about
current load of two independently at random chosen servers,
and then allocates the request to the least loaded server.
Berenbrink et al. [9] showed that in this scheme after allocating
m balls (requests, tasks, ...) to n bins (servers, machines, ...)
the maximum number of balls assigned to any bin, called maxi-
mum load, is at most m/n+O(log log n) with high probability.
This only deviates O(log log n) from the average load and the
deviation depends on the number of servers. However, in many
settings, selecting any two random servers might be infeasible
or costly. For example proximity principle in CDNs for server
selection is essential to reduce communication cost; i.e., each
request should be redirected to a nearby server.

Considering this constraint, Kenthapadi and Panigrahi [10]
proposed a model where n bins are organized as a d-regular
graph. Corresponding to each ball, a node is chosen uniformly
at random as the first candidate. Then, one of its neighbours
is chosen uniformly at random as the second candidate and
the ball is allocated to the one with the minimum load. Under
this assumption, they proved that if the graph is sufficiently
dense (i.e., the average degree is nΩ(log logn/ logn)), then after
allocating n balls the maximum load is Θ(log log n) with high
probability. Although the model fairly considers the proximity
principle, due to the cache limitation it cannot be directly
applied in cache networks.

In summary, the proximity principle can be in tension with
load balancing in many situations, as nearby users may be
congested. This leads to a fundamental trade-off between the
maximum load and the communication cost. Hence, designing
a distributed assignment strategy to handle this trade-off
optimally is a central and challenging goal in cache networks.
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B. Problem Setting and Our Contributions

While many authors have used the idea of power of two
choices in server-selection algorithms, theoretical foundations
of this phenomena in the context of cache networks with
communication cost, has not yet been investigated. In this
paper, we consider a general cache network model that entails
basic characteristics of many practical scenarios. We consider
a grid network of n servers, each equipped with a cache of size
M . Also there are n sequential file requests, from a library
of size K, distributed among servers uniformly at random.
Let us assume a popularity distribution P = {p1, . . . , pK}
for the library. We assume cache placement at each server
is proportional to this popularity distribution. Every server
either serves its requests or redirects them (via an assignment
scheme) to other nodes which have cached the files. We define
the maximum load of an assignment scheme as the maximum
number of allocations to any single server after assigning all
requests. The communication cost is the average number of
hops required to deliver requested file to its request origin.

In the simplest assignment scheme, each request arrived at
every server should be dispatched to the nearest file replica.
This scheme results in the minimum communication cost,
while ignoring maximum load of servers. We show that, for
every constant 0 < α < 1/2, if K = n, M = nα, and
P is a uniform distribution, this scheme will result in the
maximum load in the interval [Ω(log n/ log log n), O(log n)]
with high probability1 (w.h.p.). Moreover, for every constant
0 < ε < 1, if K = n1−ε and M = Θ(1), then the maximum
load is Θ(log n) w.h.p. We also investigate the communication
cost occurred in this scheme for Uniform and Zipf popularity
distributions. In particular, we derive the communication cost
of Θ(

√
K/M) for the Uniform distribution.

In contrast, we propose a new scheme which considers both
maximum load and communication cost objectives simulta-
neously. For each request, this scheme chooses two random
candidate servers that have cached the request while putting
a constraint on their distance r to the requesting node (i.e.,
the proximity constraint). Due to cache size limitation and the
proximity constraint, current results in the balanced allocation
literature cannot be carried over to our setting. Basically, we
show that here the two chosen servers will become correlated
and this might diminish the power of two choices. Since this
correlation arises from both memory limitation and proximity
principle, the main challenge we address in this paper is
characterizing the regimes where we can benefit from the
power of two choices and at the same time have a low
communication cost.

In particular, suppose 0 < α, β < 1/2 be two constants and
let K = n, M = nα, r = nβ , and P be a Uniform distribution.
Then, provided α+2β ≥ 1+2(log log n/ log n), the maximum
load is Θ(log log n) w.h.p., and the communication cost is
Θ(r). Therefore, we deduce that if we set M = nα, for some
constant 0 < α < 1/2, then it is sufficient to have β =

1With high probability refers to an event that happens with probability
1− 1/nc, for some constant c > 0.

1−α
2 +log log n/ log n and hence r = n

1−α
2 log n. This means

that the communication cost is only log n factor above the
communication cost achieved by the nearest replica strategy,
which is Θ(

√
K/M) = Θ(n

1−α
2 ).

C. Related Work

Load balancing has been the focus of many papers on cache
networks [11], [12], [13], among which distributed approaches
have attracted a lot of attention (e.g., see [14], [7], and [15]).
Randomized load balancing via the power of two choices, is a
popular approach in this direction [6]. Chen et al. [16] consider
the two choices selection process, where the second choice is
the next neighbor of the first choice. In [17] Xia et al. use the
length of common prefix (LCP)-based replication to arrive at a
recursive balls and bins problem. In [16] and [17], the authors
benefit from the metaphor of power of two choices to design
algorithms for randomized load balancing. In contrast, in this
paper we follow a theoretical approach to derive provable
results for cache networks with limited memory.

In [18] the authors consider the supermarket model for
performance evaluation of CDNs. Although the work [18]
considers the memory limitation into account, it does not
consider the proximity principle which is a central issue in
our paper. Liu et al. [19] study the setting where the clients
compare the servers in terms of hit-rate (for web applications),
or bit-rate (for video applications) to choose their favourite
ones. Their setup and objectives are different from those we
consider here. Moreover, they have not considered the effect
of their randomized load balancing scheme on communication
cost.

Additionally, the trade-off between proximity and load
balancing in request routing has been considered in some
works such as [20], [21], and [22]. Although these works
have mentioned this trade-off, non of them provides a rigorous
analysis. To the best of our knowledge, our paper is the
first work characterizing the above trade-off in an analytical
framework.

From the theoretical viewpoint, in the standard balls and
bins model, each ball (request) picks two bins (servers) in-
dependently and uniformly at random and it is then allocated
to the one with lesser load [5]. However, memory limitation
and proximity principle in cache networks makes the bins
choices correlated which resembles the balls and bins model
with related choices (e.g., see [23], [10], [24], and [25]). Our
result also resides in this category, which is specific to cache
networks with memory limitation and proximity constraint.

The organization of the paper is as follows. In Section II,
we present our notation and problem setup. Then, in Section
III the nearest replica strategy, as the baseline scheme, is
presented and its maximum load and communication cost
are investigated. In Section IV, we propose the proximity-
aware two choices strategy, which at the same time considers
proximity of requests and servers, and benefits from the power
of two choices. In order to do this, we first present some
examples to shed light on different aspects of the problem.
Then, we propose our main results in two different regimes,



namely M = nα, for every constant 0 < α < 1/2, and
M = K. In Section V performance of these two schemes are
investigated via extensive simulations. Finally, our discussions
and future directions are presented in Section VI.

II. NOTATION AND PROBLEM SETTING

A. Notation

Throughout the paper, with high probability refers to an
event that happens with probability 1−1/nc, for some constant
c > 0. Let G = (V,E) be a graph with vertex set V and edge
set E where e(G) := |E|. For u ∈ V let d(u) denote for the
degree of u in G. For every pair of nodes u, v ∈ V , dG(u, v)
denotes the length of a shortest path from u to v in G. The
neighborhood of u at distance r is defined as

Br(u) := {v : dG(u, v) ≤ r and v ∈ V (G)} .

Finally, we use Po(λ) to denote for the Poisson distribution
with parameter λ.

B. Problem Setting

We consider a cache network consisting of n caching
servers (also called cache-enabled nodes) and edges connect-
ing neighboring servers forming a

√
n×
√
n grid. Thus, direct

communication is possible only between adjacent nodes, and
other communications should be carried out in a multi-hop
fashion.

Remark 1. Throughout the paper for the sake of presentation
clarity we may consider a torus with n. This helps to avoid
boundary effects of grid and all the asymptotic results hold
for the grid as well.

Suppose that the cache network is responsible for handling
a library of K files W = {W1, . . . ,WK}, whereas the popu-
larity profile follows a known distribution P = {p1, . . . , pK}.

The network operates in two phases, namely, cache con-
tent placement and content delivery. In the cache content
placement phase each node caches M ≤ K files randomly
from the library according to their popularity distribution
P = {p1, . . . , pK} with replacement, independent of other
nodes. Also note that, throughout the paper we assume that
M � K, unless otherwise stated.

Consider a time block during which n files are requested
from the servers sequentially. The server of each request is
chosen uniformly at random from n servers. Let Di denote
the number of requests (demands) arrived at server i. Then
for large n we have Di ∼ Po(1) for all 1 ≤ i ≤ n.

For library popularity profile P , we consider two probability
distributions, namely, Uniform and Zipf with parameter γ. In
the Uniform distribution we have

pi =
1

K
, i = 1, . . . ,K,

which considers equal popularity for all the files. In Zipf
distribution the request probability of the i-th popular file is

inversely proportional to its rank as follows

pi =
1/iγ

K∑
j=1

1/jγ
, i = 1, . . . ,K,

which has been confirmed to be the case in many practical
applications [26], [27].

For any given cache content placement, an assignment
strategy determines how each request is mapped to a server.
Let Ti denote the number of requests assigned to server i at
the end of mapping process.

Now, for each strategy we define the following metrics.

Definition 1 (Communication Cost and Maximum Load).
• The communication cost of a strategy is the average

number of hops between the requesting node and the
serving node, denoted by C.

• The maximum load of a strategy is the maximum number
of requests assigned to a single node, denoted by L =
max1≤i≤n Ti.

III. NEAREST REPLICA STRATEGY

The simplest strategy for assigning requests to servers is
to allocate each request to the nearest node that has cached
the file. This strategy, formally defined below, leads to the
minimum communication cost, while does not try to reduce
maximum load.

Definition 2 (Strategy I: Nearest Replica Strategy). In this
strategy each request is assigned to the nearest node –in the
sense of the graph shortest path distance– which has cached
the requested file. If there are multiple choices ties are broken
randomly.

Consider the set of nodes that have cached file Wj , say
Sj . According to Strategy I, each demand from node u for
file Wj will be served by arg minv∈Sj dG(u, v). This induces
a Voronoi Tessellation on the torus corresponding to file
Wj which we denote by Vj . Then, alternatively, we can
define Strategy I as assigning each request of file Wj to the
corresponding Voronoi cell center.

In order to analyze the maximum load imposed on each
node, we should investigate the size of such Voronoi regions.
The following Lemma is in this direction.

Lemma 1. Under the Uniform popularity distribution, the
maximum cell size (number of nodes inside each cell) of Vj ,
1 ≤ j ≤ K, is at most O (K log n/M) w.h.p. In particular,
every Voronoi cell centered at any node is contained in a sub-
grid of size r × r with r = O

(√
K log n/M

)
. Furthermore,

if K = n1−ε, for some constant 0 < ε < 1, and M = Θ(1),
then there exists a Voronoi cell of size Θ (K log n/M) w.h.p.

Proof: Refer to Appendix B.
Now, we are ready to present our main results for this

section which characterize the maximum load of Strategy I,
in Theorems 1 and 2.



Theorem 1. Suppose that K = n1−ε, for some constant 0 <
ε < 1, and M = Θ(1). Then, under Uniform distribution P ,
Strategy I achieves maximum load of L = Θ(log n) w.h.p.

Proof: Consider node u which has cached a set of distinct
files, say S, with |S| ≤M . Applying Lemma 1 shows that all
Voronoi cells centered at u corresponding to cached files at
u are contained in a sub-grid of size at most O(K log n/M)
w.h.p. Also in each round, every arbitrary node requests for a
file in S with probability |S|/nK ≤M/nK, as each request
randomly chooses its origin and type. Hence, by union bound,
a node in the sub-grid may request for a file in S with
probability at most O(K log n/M) · (M/nK) = O(log n/n).
Since there are n requests, the expected number of requests
imposed to node u is O(log n). Now using a Chernoff bound
(e.g., see Appendix A) shows that w.h.p. u has to handle at
most O(log n) requests.

On the other hand, to establish a lower bound on the
maximum load we proceed as follows. Lemma 1 shows that
there exits a Voronoi cell in Vj , for some j, such that the center
node should handle the requests of at least Θ(K log n/M)
nodes w.h.p. Also each node in the cell may request for
file Wj with probability 1/nK. So on average there are
Θ(log n/M) requests imposed on the cell center. Similarly,
by a Chernoff bound, one can see that this node experiences
the load Θ(log n/M), which concludes the proof for constant
M .

Remark 2. It should be noted that the same result of Θ(log n)
for the maximum load can also be proved for the Zipf
distribution. That is because the content placement distribution
is chosen proportional to the file popularity distribution P , and
consequently this result is insensitive to P . However, the proof
involves lengthy technical discussions which we omit in this
paper.

Theorem 2. Suppose that K = n and M = nα, for some 0 <
α < 1/2. Then, under the Uniform distribution, the maximum
load is in the interval [Ω(log n/ log log n), O(log n)] w.h.p.

Proof: Refer to Appendix B.
Next, we investigate the communication cost of Strategy I

in the following theorem.

Theorem 3. Under the Uniform popularity distribution, Strat-
egy I achieves the communication cost C = Θ(

√
K/M),

for every M � K. Under Zipf popularity distribution with
M = Θ(1), it achieves

C =



Θ
(√

K/M
)

: 0 < γ < 1,

Θ
(√

K/M logK
)

: γ = 1,

Θ
(
K1−γ/2/

√
M
)

: 1 < γ < 2,

Θ
(

logK/
√
M
)

: γ = 2,

Θ
(

1/
√
M
)

: γ > 2.

(1)

Proof: Refer to Appendix B.

Theorem 3 shows how non-uniform file popularity reduces
communication cost. The skew in file popularity is determined
by the parameter γ which will affect the communication cost.
For example, for γ < 1 communication cost is similar to the
Uniform distribution, while for γ > 2, it becomes independent
of K.

Since in Strategy I we have assigned each request to the
nearest replica, Theorem 3 characterizes the minimum com-
munication cost one can achieve. However, Theorems 1 and 2
show a logarithmic growth for the maximum load as a function
of network size n. This imbalance in the network load is be-
cause in Strategy I each request assignment does not consider
the current load of servers. A natural question is whether, at
each request allocation, one can use a very limited information
of servers’ current load in order to reduce the maximum load.
Also one can ask how does this affect the communication cost.

IV. PROXIMITY-AWARE TWO CHOICES STRATEGY

Strategy I introduced in the last section will result in the
minimum communication cost, while, the maximum load for
that strategy is of order Ω (log n/ log log n). In this section
we investigate an strategy which will result in an exponential
decrease in the maximum load, i.e., reduces maximum load to
Θ (log log n), formally defined as follows.

Definition 3 (Proximity-Aware Two Choices Strategy). For
each request born at an arbitrary node u consider two
uniformly at random chosen nodes from Br(u), that have
cached the requested file. Then, the request is assigned to the
node with lesser load. Ties are broken randomly.

For the sake of illustration, first, we consider some examples
in the following.

Example 1 (M = K and r =∞2). In this example each node
can store all the library and there is no constraint on proximity.
As mentioned in Section I, the number of files that should be
handled by each node (i.e., Di for i = 1, . . . , n) will be a
Po(1) random variable. In this case, according to Strategy II,
two random nodes are chosen from all network nodes and the
request is assigned to the node with lesser load.

Therefore, in terms of maximum load, this problem is
reduced to the standard power of two choices model in the
balanced allocations literature [5]. In this model there are
n bins and n sequential balls which are randomly allocated
to bins. In every round each ball picks two random bins
uniformly, and it is then allocated to the bin with lesser load
[5]. Then it is shown that the maximum load of network is
L = maxi Ti = log log n(1 + o(1)) w.h.p. [5], which is an
exponential improvement compared to Strategy I.

However, in contrast to Example 1, in cache networks
usually each node can store only a subset of files, and this
makes the problem different from the standard balls and bins
model, considered in [5]. Here, due to the memory constraint

2It should be noted that r ≥
√
n (including r = ∞) is equivalent to

r =
√
n. Thus in this paper we use r =

√
n and r =∞ alternatively.



at each node, the choices are much more limited than the
M = K case. In other words here we have the case of
related choices. In the related choices scenario, the event of
choosing the second choice is correlated with the first choice;
this correlation may annihilate the effect of power of two
choices as demonstrated in Example 2.

Example 2 (K = n, M = Θ(1), and r =∞). In this regime,
there is a subset of the library, say S with |S| = Θ(n), whose
files are replicated in [1,M ] number of places. On the other
hand, each file type is requested Po(1) times and hence w.h.p.
there will be a file in S which is requested Θ(log n/ log log n)
times (e.g., see [28]). Since each file in S is replicated at most
M times, requests for the file are distributed among at most
M nodes and thus the maximum load of the corresponding
nodes will be at least Θ(log n/ log log n)/M . Hence, due to
memory limitation we cannot benefit from the power of two
choices.

Although Example 2 shows that memory limitation can
annihilate the power of two choices but this is not always the
case. Example 3 shows even for M = 1 for some scenarios
we can achieve L = O(log log n).

Example 3 (K = n1−ε for every constant 0 < ε < 1,
M = 1, and r =∞). For any popularity distribution P where∑K
j=1 (pjn)−c = o(1), Strategy II achieves maximum load

L = O(log log n) w.h.p. Also, notice that Uniform and Zipf
distributions satisfy this requirement, whenever ε ∈

(
γ−1
γ , 1

)
for γ ≥ 1, where γ is Zipf parameter.

Roughly speaking, when M = 1, we may partition the
servers based on their cached file and hence we have K “dis-
joint” subsets of servers. Similarly there are K request types
where each request should be addressed by the corresponding
subset of servers. Thus, here we have K disjoint Balls and
Bins sub-problems, and the sub-problem with maximum load
determines the maximum load of the original setup. The reason
that here, in contrast to Example 2, we can benefit from power
of two choices is the assumption of K � n.

For a formal proof of above claim, refer to Appendix C.

Above examples bring to attention the following question.

Question 1. In view of the memory limitation at each server
in cache networks, what are the regimes (in terms of problem
parameters) one can benefit from the power of two choices to
balance out the load?

Addressing Question 1, for the general M > 1 case, is more
challenging than Example 3 and needs a completely different
approach. The simplicity of case M = 1 is that there is no
interaction between K Balls and Bins sub-problems. On the
other hand, consider M > 1. If a request, say Wj , should
be allocated to a server then the load of two candidate bins
that have cached Wj should be compared. However, load of
other file types will also be accounted for in this comparison.
So there is flow of load information between different sub-
problems which makes them entangled.

In all above examples, we have not considered the proximity
constraint, i.e., r = ∞, yet. This results in a fairly high
communication cost C = Θ (

√
n). However, in general since

parameter r controls the communication cost, it can be chosen
to be much less than the network diameter, i.e., Θ(

√
n). This

proximity awareness introduces another source of correlation
(other than memory limitation) between the two choices. Thus,
considering the proximity constraint may annihilate the power
of two choices even in large memory cases as demonstrated
in the following example.

Example 4 (M = K and r = 1). In this example, when a
request arrives at a server, the server chooses two random
choices among itself and its neighbours. Then the request
is allocated to the one with lesser load. Since there exists
a server at which maxiDi = Θ(log n/ log log n) requests
arrive, maximum load of network (i.e., L = maxi Ti) will
be at least Θ(log n/ log log n)/5.

Thus, similar to Question 1 regarding the memory limitation
effect, one can pose the following question regarding proxim-
ity principle.

Question 2. In view of the proximity constraint of Scheme II,
what are the regimes (in terms of problem parameters) one
can benefit from the power of two choices to balance out the
load?

In order to completely analyze load balancing performance
of Scheme II, one should consider both sources of correlation
simultaneously (which is not the case in above examples). To
this end, in the following, we investigate two memory regimes,
namely M = K and M = nα, for some 0 < α < 1/2.

Our main result for M = nα is presented in the following
theorem.

Theorem 4. Suppose that 0 < α, β < 1/2 be two constants
and let K = n, M = nα, and r = nβ . Then if

α+ 2β ≥ 1 + 2 log log n/ log n,

under the Uniform popularity distribution, Strategy II achieves
maximum load L = Θ(log logn) and communication cost
C = Θ(r) w.h.p.

Remark 3. To have a more accessible proof, in Theorem 4,
we have assumed that K = n. Note that the proof techniques
can also be extended to the case where K = O(n).

In order to prove the theorem, let us first present an
interesting result that was shown in [10] as follows.

Theorem 5 ([10]). Given an almost ∆-regular graph3 G
with e(G) edges and n nodes representing n bins, if n balls
are thrown into the bins by choosing a random edge with
probability at most O(1/e(G)) and placing into the smaller
of the two bins connected by the edge, then the maximum load
is Θ(log log n) +O

(
logn

log(∆/ log4 n)

)
+O(1) w.h.p.

3A graph is said to be almost ∆-regular, if each vertex has degree Θ(∆).



Remark 4. Note that in the original theorem presented in
[10], it is assumed that each edge is chosen uniformly among
all edges of graph G. However, here we slightly generalize
the result so that each edge is chosen with probability at most
O(1/e(G)). The proof follows the original proof’s idea with
some modifications in computation parts, where due to lack of
space we omit.

In order to apply Theorem 5, we first need to define a new
graph H as follows.

Definition 4 (Configuration Graph). For given parameter r,
configuration graph H is defined as a graph whose nodes
represent the servers and two nodes, say u and v, are
connected if and only if u and v have cached a common file
and d(u, v) ≤ 2r in the torus.

For every two servers u and v, let T (u, v) be the set of
distinct files that have been cached in both nodes u and v.
Also denote |T (u, v)| by t(u, v). Define t(u) to be the number
of distinct cached files in u. Now, let us define goodness of a
placement strategy as follows.

Definition 5 (Goodness Property). For every positive constant
δ ∈ [0, 1] and µ = O(1), we say the file placement strategy is
(δ, µ)-good, if for every u and v, t(u) ≥ δM and t(u, v) < µ.

Lemma 2. The proportional cache placement strategy intro-
duced in Section II, is (δ, µ)-good w.h.p.

Proof: Clearly, every set of cached files in every node
(with replacement) can be one-to-one mapped to a non-
negative integral solution of equation

∑K
i=1 xi = M , where

each xi expresses the number of times that file i has been
cached in the node. A combinatorial argument shows that, the
equation has

(
K+M−1

M

)
non-negative integer solutions. So for

each 1 ≤ s ≤M , we have

Pr [t(u) = s] =

(
K
s

)(
M−1
M−s

)(
K+M−1

M

) , (2)

where we first fixed a set of file indexes of size s, say
I = {i1, i2, . . . , is}, and then count the number of integral
solutions to the equation

∑
i∈I xi = M − s.

In order to bound (2), we note that for every 1 ≤ a ≤ b,
(b/a)a ≤

(
b
a

)
≤ ba and also

(
b
a

)
≤ 2b. Recall that we assumed

K = n and M = nα, 0 < α < 1/2. Hence for every 1 ≤ s ≤
δM , we have

Pr [t(u) = s] ≤ Ks2M(
K
M

) ≤ Ks2M

(K/M)M
= (2M)MKs−M

≤ (2nαnδ−1)M .

Thus, by choosing δ = (1−α)/3, for every 1 ≤ s ≤ δM , we
have

Pr [t(u) = s] ≤ (2nα+δ−1)M = (2n2α/3−2/3)M

≤ (2n−1/3)M = n−ω(1),

where the last equality follows due to M = nα = ω(1). Now
the union bound over all 1 ≤ s ≤ δM and n nodes yields

Pr [∃u ∈ V : t(u) ≤ δM ] = n−ω(1). (3)

By a similar argument, for each 1 ≤ t ≤M and every u and
v, we have

Pr [t(u, v) ≥ t] =

(
K

t

)((K+M−t−1
M−t

)(
K+M−1

M

) )2

.

Thus, for any constant µ ≥ 5/(1− 2α), we can write

Pr [t(u, v) ≥ µ]

≤ Kµ

(
(K +M − µ− 1)!M !

(K +M − 1)!(M − µ)!

)2

≤ Kµ

(
Mµ

Kµ

)2

≤ M2µ

Kµ
= n(2α−1)µ = O(1/n5).

By applying the union bound over all pairs of servers, for
every u and v we have

Pr [t(u, v) ≥ µ] = O(1/n3). (4)

Hence, t(u, v) < µ w.h.p. Putting inequalities (3) and (4)
together concludes the proof.

The following lemma presents some useful properties of H
and Strategy II.

Lemma 3. Conditioning on goodness of file placement and
assuming K = n, M = nα and r = nβ with α + 2β ≥
1 + 2 log log n/ log n, we have

(a) W.h.p. H is almost ∆-regular with ∆ = Θ
(
M2r2

K

)
.

(b) For each request, Strategy II samples an edge of H (two
servers) with probability O(1/e(H)).

Proof: Consider arbitrary node u with s distinct files.
Then by definition of H , for every node v we have

ps := Pr [t(u, v) ≥ 1|t(u) = s] = 1−
(
K − s
K

)M
=
sM

K
(1 + o(1)),

where 1 ≤ s ≤M . On the other hand u and v are connected
in H , if in addition dG(u, v) ≤ 2r. Therefore for every given
node u with s distinct cached files, d(u) in H (degree of
u in H) has a binomial distribution Bin(b2r(u), ps), where
b2r(u) = |B2r(u)|. Hence applying a Chernoff bound implies
that with probability 1− n−ω(1), we have

d(u) =
sMb2r(u)

K
(1 + o(1)).

Conditioning on the goodness of file placement, s = t(u) =
Θ(M). Also by symmetry of torus, we have b2r(u) = Θ(r2),
for every u. So, with high probability for every u, we have

d(u) = Θ
(
M2r2/K

)
,

where this concludes the proof of part (a).



Now it remains to show that Strategy II picks an edge of
H , with probability O(1/e(H)). First, notice that

e(H) = Θ
(
nM2r2/K

)
= Θ(M2r2), (5)

as K = n. Then recall that each file is cached in every node
with probability p = 1 − (1 − 1/K)M = M/K(1 + o(1)),
independently. For any given node u and file Wj , let Fj(u)
be the number of nodes at distance at most r that have cached
file Wj . Then Fj(u) has a binomial distribution Bin(br(u), p),
where br(u) = |Br(u)|. So

E [Fj(u)] = br(u) · p = Θ(r2M/K),

where br(u) = Θ(r2) for every u. Since
α+ 2β ≥ 1 + 2 log log n/ log n we have E [Fj(u)] =
ω(log n), for every u and j. Now, applying a Chernoff bound
for Fj(u) implies that with probability 1 − n−ω(1), Fj(u)
concentrates around its mean and hence, w.h.p., we have for
every u and j

Fj(u) = Θ(r2M/K) = Θ(r2M/n).

Consider an edge (u, v) ∈ E(H), with t(u, v) = t. Define
Su,v to be the set of nodes that may pick pair u and v randomly
in Strategy II. It is not hard to see that |Su,v| = O(r2). Now
we have,

Pr [(u, v) ∈ E(H) is picked by Strategy II|t(u, v) = t]

=
∑

j∈T (u,v)

1

K

∑
w∈Su,v

1

n

1(
Fj(w)

2

)
=

1

n2

∑
j∈T (u,v)

∑
w∈Su,v

1(
Fj(w)

2

)
=

1

n2

∑
j∈T (u,v)

∑
w∈Su,v

Θ(n2/r4M2). (6)

Conditioned on “goodness,” we have for every (u, v) ∈ E(H),
1 ≤ t(u, v) < µ. So (6) can be simplified as

Pr [(u, v) ∈ E(H) is picked by Strategy II]

≤ Θ(µ|Su,v|/r4M2)

= O(1/r2M2) = O(1/e(H)),

where the last equality follows from (5).
Proof of Theorem 4: Applying Lemma 3 shows that

w.h.p. the configuration graph H is an almost ∆-regular graph
where ∆ = M2r2/n. Moreover, in each step, every edge of H
is chosen randomly with probability O(1/e(H)). Hence, we
can apply Theorem 5 and conclude that w.h.p. the maximum
load is at most

Θ(log log n) +O

(
log n

log(∆/ log4 n)

)
= Θ(log log n) +O(1),

where it follows because α+ 2β ≥ 1 + 2 log log n/ log n and
hence ∆ = M2r2/n = n2α+2β−1 > nα.

Now let us present our next result regarding to the M = K
regime.

Theorem 6. Suppose M = K and Uniform distribution P
over the file library. Then Strategy II achieves the maximum
load L = Θ (log log n) and communication cost C = Θ

(
nβ
)

for any β = Ω(log log n/ log n).

Proof: Let us choose r = nβ , for some β =
Ω(log log n/ log n). By the assumption M = K, the configu-
ration graph H (corresponding to r) is a graph in which two
nodes u and v are connected if and only if d(u, v) ≤ 2r. Since
our network is symmetric, for every u, |Br(u)| = Θ(r2) and
hence H is a regular graph with ∆ = Θ(r2). Also it is not
hard to see that Strategy II is equivalent to choosing an edge
uniformly from H . Applying Theorem 5 ([10]) to H results in
the maximum load of Θ(log log(n)). In addition, choosing two
random nodes in |Br(u)| = Θ(r2) results in communication
cost of C = Θ(r) = Θ

(
nβ
)
.

The main point of Theorem 6 is that we can just have
C = Θ

(
nβ
)
, for β = Ω(log log n/ log n), to benefit from the

luxury of power of two choices, which is a very encouraging
result.

V. SIMULATIONS

In this section, we demonstrate the simulation results for
two strategies introduced in the previous sections, namely,
nearest replica and proximity aware two choices strategies.
The simulation results are shown for the torus topology. Here,
we consider Uniform popularity over the file library. As a
result, the file placement is also considered to be uniform over
the servers’ storage.

Figure 1 shows the maximum load of Strategy I as a
function of the number of servers where different curves
correspond to different cache sizes. The network graph is a
torus, where 100 files with Uniform popularity are placed
uniformly at random in each node. Each point is an av-
erage of 10000 simulation runs. This figure confirms that
the logarithmic growth of the maximum load, asymptotically
proved in Theorem 1, also holds for intermediate values of
n ≈ 100, . . . , 3000 which makes the result of Theorem 1 more
general. Comparing different curves reveals the fact that in
larger cache size setting, we have a more balanced network.
That happens because enlarging cache sizes results in a more
uniform Voronoi tessellation, i.e., having cells with smaller
variation in size.

Furthermore, Figure 2 shows the communication cost of
Strategy I as a function of cache size where different curves
correspond to different library sizes. Here, the network graph
is a torus of size 2025 and each point is an average of 10000
simulation runs. This figure is in agreement with the result of
Theorem 3.

In order to simulate Strategy II, first we set r = ∞ to
study the effect of cache size on the maximum load and
communication cost and then consider the effect of limited
r on the performance of the system. Figure 3 shows the
maximum load of the network versus number of servers where
each curve demonstrates a different cache size. The network
graph is a torus, where 2000 files with Uniform popularity
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Fig. 1: The maximum load versus number of servers for
Strategy I.
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Fig. 2: The communication cost versus cache size for Strat-
egy I.

are placed uniformly at random in each node. Each point is
an average of 800 simulation runs. In each curve, since cache
size and number of files are fixed, increasing the number of
servers translates to increasing each file replication.

In Figure 3, when the file replication is low, due to high
correlation between the two choices of Strategy II, power of
two choices is not expected. This is reflected in Figure 3; for
example in the curve corresponding to M = 1 for n ≤ 10000
we have a fast growth in maximum load which mimics the load
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Fig. 3: The maximum load versus number of servers for
Strategy II. Here, we assume r =∞.
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Fig. 4: The communication cost versus number of servers for
Strategy II. Here, we assume r =∞.

balancing performance of Strategy I. However, for n > 50000,
since there is enough file replication in the network, the load
balancing performance is greatly improved due to power of
two choices. This is in accordance with the lessons learned
from Section IV. Also, for 10000 < n < 50000, we have
a transition region where a mixed behaviour is observed.
Likewise, the curve for M = 2 shows a similar trend.
However, for M = 10 due to memory abundance, we only
observe the latter behaviour where power of two choices is
achieved. Observations made above from Figure 3 has an
important practical implication. Since employing Strategy II
is only beneficial in networks with high file replication, for
other situations with limited cache size, the less sophisticated
Strategy I is a more proper choice.

Figure 4 draws the communication cost versus number of
servers for various cache sizes for similar setting used in
Figure 3. Since in this figure there is no constraint on the
proximity the communication cost growth is of order Θ(

√
n).

In simulations depicted in Figures 3 and 4, we only consider
the case r =∞. In order to investigate the effect of parameter
r on the performance of the system, in Figure 5, we have sim-
ulated network operation for different values of r. This results
in a trade-off between the maximum load and communication
cost, as shown in Figure 5. Here we consider a torus with 2025
servers, where 500 files with Uniform popularity are placed
uniformly at random in each node. Each point is an average
of 5000 simulation runs.

In this figure, like before, i.e., Figure 3, we observe two
performance regimes based on the cache size M . In high
memory regime, e.g., for curves corresponding to M = 50
and M = 200, we can achieve the power of two choices
by sacrificing a negligible communication cost. On the other
hand, in low memory regime, i.e., M = 1, we cannot decrease
the maximum load even at the expense of high communication
cost values. For intermediate values of M , we clearly observe
the trade-off between the maximum load and communication
cost.
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nication cost for Strategy II.

VI. DISCUSSION, OPEN QUESTIONS AND FUTURE
DIRECTIONS

In this section, first, we summarize the paper. Then we
bring forward discussion about the proposed schemes, open
questions and possible future directions.

In summary, we have considered the problem of ran-
domized load balancing and its tension with communication
cost in cache networks. By proposing two request assign-
ment schemes, the trade-off between communication cost and
maximum load has been investigated analytically. Moreover,
simulation results support our theoretical findings and provide
practical design guidelines.

The proposed proximity-aware two choices scheme can be
implemented in a distributed manner. To see why, notice
that upon arrival of each request at each server, this strategy
needs two kinds of information to redirect the request. This
information can be provided to the requesting server without
the need for a centralized authority in the following way. The
first one is the cache content of other users in its neighborhood
with radius r. Since, the cache content dynamic of servers is
much slower than the requests arrival, this can be done by
periodic polling of nearby servers without introducing much
overhead. Also, the cache content placement at each server can
be implemented via efficient Distributed Hash Table (DHT)
schemes (see, e.g., [29] and [30]), which can be adopted to
dynamic library popularity profiles. This will also enable all
users to obtain global cache content information in a robust
and distributed manner. In this paper we assume a static profile
and do not go into the details of such schemes. The second
type of information is the queue length information of two
randomly chosen nodes inside its neighborhood with radius r,
which can also be efficiently done in a distributed manner by
polling or piggybacking.

In practice, request arrivals and servers’ operation happen
in continuous time which needs a queuing theory based
performance analysis. However, as shown in [6] and [31],
the behaviour of load balancing schemes in continuous time
(i.e., known as the supermarket model) and static balls and
bins problems are closely related. Thus, we conjecture that

our proposed scheme will also have the same performance in
queuing theory based model. We postpone a rigorous analysis
of such scenario to future work.

In this paper we do not consider any form of coding in
the cache content placement and content delivery phases.
However, as recently shown in [32] (and follow up works [33],
[34], [35]), employing coding in cache networks can reduce
network traffic dramatically. An important future work will be
investigating the effect of coding techniques in the context of
our proposed randomized load balancing scheme.
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APPENDIX A
SOME TAIL BOUNDS

Theorem 7 (Chernoff Bounds). Suppose that
X1, X2, . . . , Xn ∈ {0, 1} are independent random variables
and let X =

∑n
i=1Xi. Then for every δ ∈ (0, 1) the following

inequalities hold:

Pr [X ≥ (1 + δ)E [X]] ≤ exp(−δ2 E [X] /2),

Pr [X ≤ (1− δ)E [X]] ≤ exp(−δ2 E [X] /3).

In particular,

Pr [|X −E [X] | ≥ δE [X]] ≤ 2 exp(−δ2 E [X] /3).

For a proof see [36].
To deal with moderate independency we have the following

lemma whose proof can be found in [37, Lemma 1.18].

Lemma 4 (Deviation bounds for moderate independency).
Let X1, · · · , Xn be arbitrary binary random variables. Let
X∗1 , X

∗
2 , · · · , X∗n be binary random variables that are mutu-

ally independent and such that for all i, Xi, is independent
of X1, · · · , Xi−1. Assume that for all i and all x1, ..., xi−1 ∈
{0, 1},

Pr [Xi = 1|X1 = x1, · · · , Xi−1 = xi−1] ≥ Pr [X∗i = 1] .

Then for all k ≥ 0, we have

Pr

[
n∑
i=1

Xi ≤ k

]
≤ Pr

[
n∑
i=1

X∗i ≤ k

]
and the latter term can be bounded by any deviation bound
for independent random variables.

APPENDIX B
PROOFS

Proof of Lemma 1: Upper Bound – Fix a node u and
w.l.o.g. assume that u is denoted by pair (0, 0) in the torus.
With respect to u and some positive number r > 0 define four
areas as follows

A1(u) := {(x, y) : 0 ≤ y ≤ x/2 and (x, y) ∈ Br(u)},
A2(u) := {(x, y) : 0 ≤ −x ≤ y/2 and (x, y) ∈ Br(u)},
A3(u) := {(x, y) : 0 ≤ −y ≤ −x/2 and (x, y) ∈ Br(u)},
A4(u) := {(x, y) : 0 ≤ x ≤ −y/2 and (x, y) ∈ Br(u)},

which are shown in Fig. 6. It is easy to see that all four areas
have the same size, that is

|A1(u)| =
br/3c∑
y=0

r−y∑
x=2y

1

=

br/3c∑
y=0

(r − 3y + 1)

≥
br/3c∑
y=0

3y

≥ r2/8. (7)

Let us fix some arbitrary 1 ≤ j ≤ K and for every node u
define indicator random variable Xu,j taking value 1 if u has
cached file Wj and there is no node in A1(u) that has cached
file Wj , and 0 otherwise. Then,

Pr [Xu,j = 1] =

(
1−

(
1− 1

K

)M)(
1− 1

K

)M(|A1(u)|−1)

,

where the first term determines the probability that u caches
Wj and the second one determines the probability that nodes in
A1(u) \ {u} do not cache Wj . By setting r = 5

√
K log n/M

and applying Inequality (7) we have,(
1− 1

K

)M(|A1(u)|−1)

= e−
25 logn

8 +M/K(1 + o(1))

= O(n−3), (8)

where it follows from 1− 1/K = e−1/K(1 + o(1)) and
M/K = o(1). Moreover, by using the approximation
1− (1− 1/K)M = M(1 + o(1))/K, we have

Pr [Xu,j = 1] ≤ M(1 + o(1))

K · n3
.

Therefore applying the union bound over all n nodes and
K files implies that w.h.p. for every u there exists at least one
node in A1(u) which shares a common file with u, supported
that we choose r = 5

√
K log n/M . We can similarly prove

the same argument for A2(u), A3(u) and A4(u).
Suppose that u has cached file Wj , and we want to find

an upper bound for the size of the Voronoi cell centered at u
corresponding to Wj . In order to do this let us define v1 =
(v1
x, v

1
y) ∈ A1(u) to be the nearest node to u with file Wj .

Similarly define vi ∈ Ai(u), 2 ≤ i ≤ 4. W.l.o.g. assume that
u is the origin and the nodes are in a xy-coordinate system.
Define

B := {(x, y) : v3
x ≤ x ≤ v1

x and v4
y ≤ y ≤ v2

y}.

Now we show that the Voronoi cell of u is contained in B,
and thus the size of B is an upper bound to the size of the
Voronoi cell. Consider Fig. 6. Let us consider node w in the
complement of B with wy > v2

y and wx > 0. Assume that
Puw is a shortest path from w to u that passes node (0, v2

y).
By definition of A2(u), we know the length of a shortest path
from (0, v2

y) to (v2
x, v

2
y) is |v2

x| ≤ v2
y/2. This shows that w

is closer to v2 than u, and by definition it does not belong
to the Voronoi cell centered at u. We similarly can show that
each arbitrary node w ∈ Bc is closer to either vi’s rather than
u. Since we arbitrarily choose u and 1 ≤ j ≤ K, there is
sub-grid B that contains every Voronoi cell in Vj , centered at
any given u. So the size of any Voronoi cell centered at an
arbitrary node u is bounded from above by |B|, which is at
most 4r2 = O(K log n/M).

Lower Bound – Let us define indicator random variable
Yu,j for every u and some fixed j taking value 1 if u has
cached file Wj and there is no v ∈ Br(u) that has cached file



Fig. 6: Demonstration of regions A1(u), . . . , A4(u) used in
the upper bound proof of Lemma 1.

Wj , and 0 otherwise. Note that |Br(u) \ {u}}| = 2r(r + 1).
Then we have

Pr [Yu,j = 1] =

(
1−

(
1− 1

K

)M)(
1− 1

K

)M [2r(r+1)]

.

By setting r =
√
ε ·K · log n/4M and using similar approx-

imations used in (8) we have

p , Pr [Yu,j = 1] =
M(1 + o(1))

K · nε/2
.

Let Yj =
∑
u∈ Yu,j . Then, we have the following claim.

Claim 1. For every j we have Yj ≥ 1 with probability 1−o(1).

This claim shows that there exists at least a Voronoi cell of
size Θ(r2) = Θ(K log n/M) which concludes the proof.

Now, in order to prove the claim note that

E [Yj ] =
∑
u

E [Yu,j ] = n ·M(1 + o(1))

K · nε/2
= Mnε/2(1+o(1)).

Also, we know that

Var [Yj ] =
∑
u,v

Cov(Yu,j , Yv,j)

=
∑
u,v

E [Yu,jYv,j ]−E [Yu,j ]E [Yv,j ]

=
∑
u,v

(
Pr [Yu,j = 1, Yv,j = 1]

−Pr [Yu,j = 1] ·Pr [Yv,j = 1]
)
, (9)

where the last equality holds because Yu,j’s are indicator
random variables. It is easy to see that for every u and v
with dG(u, v) > 2r, Cov(Yu,j , Yv,j) = 0 as cache content

placement at different nodes are independent processes. So
we only consider pairs u and v, with dG(u, v) ≤ 2r. Then for
each pair of nodes three following cases should be considered:
• u = v: In this case we have

Pr [Yu,j = 1, Yv,j = 1]−Pr [Yu,j = 1] ·Pr [Yv,j = 1]

= Pr [Yu,j = 1]− p2 = p(1− p).
(10)

• 0 < dG(u, v) ≤ r: By definition of indicator random
variables Yu,j’s, we have

Pr [Yu,j = 1, Yv,j = 1]−Pr [Yu,j = 1] ·Pr [Yv,j = 1]

= 0− p2. (11)

• r < dG(u, v) ≤ 2r: In this case we have

Pr [Yu,j = 1, Yv,j = 1]−Pr [Yu,j = 1] ·Pr [Yv,j = 1]

= Pr [Yu,j = 1|Yv,j = 1]Pr [Yv,j = 1]− p2

≤ M(1 + o(1))

K
p− p2 ≤ 2M

K
p. (12)

Now let us split the summation (9) based on dG(u, v) as
follows

Var [Yj ] =
∑
u

Cov(Yu,j , Yu,j)

+
∑
u

∑
v:0<dG(u,v)≤r

Cov(Yu,j , Yv,j)

+
∑
u

∑
v:r<dG(u,v)≤2r

Cov(Yu,j , Yv,j).

Applying results (10-12) yields

Var [Yj ] ≤ np(1− p)− n|Br(u)|p2 + n|B2r(u)|2Mp

K

≤ np+ 4nr(2r + 1)
2Mp

K
≤ np+ 6εnp log n

≤ 7np log n,

where we use the fact that 4r(2r + 1) ≤ 9r2 ≤ 3εK log n.
Applying Chebychev’s inequality leads to

Pr [|Yj −E [Yj ] | ≥ E [Yj ] /2] ≤ 4Var [Yj ]

E [Yj ]
2

≤ 28np log n

n2p2

=
28 log n

np
= o(1).

Therefore, Yj concentrates around its mean, i.e., np =
Θ(nε/2), which proves the claim.

Proof of Theorem 2: To establish upper bound O(log n)
for the maximum load, we follow the first part of proof of
Theorem 1. To obtain a lower bound, consider an arbitrary
server u that has cached file set S with s distinct files. Note
that by Lemma 2, we have for every node u, s = Θ(M) with
high probability. Let us define the indicator random variable
Xu,j , Wj ∈ S, taking 1 if the nearest replica of Wj is outside



of Br(u), where r =
√
K/2M and zero otherwise. It is easy

to see that Xu,j’s are correlated. For example, consider set of
files T = {Wj1 ,Wj2 , . . . ,Wjt} ⊂ S, where Xu,j′ = 1 for
every W ′j ∈ T . Then conditional on this event, each node in
Br(u) has cached files from a subset of the library of size
K − |T |. Then probability that a node in Br(u) caches Wj is
at most M/(K − t). Hence, for every Wj ∈ S,

Pr [Xu,j = 1|{Xu,j′ = xu,j′ ,Wj′ ∈ S \ {Wj}}]

≥

(
1− M

K −
∑
Wj′∈S\{Wj} xu,j′

)2r(r+1)

≥
(

1− M

K −M + 1

)2r(r+1)

= e−Ω(1) = p,

where |Br(u)\{u}| = 2r(r+1) = Θ(K/M) and hence p is a
constant. Let Z =

∑
Wj∈S Xu,j and then E [Z] ≥ s ·p. Using

a Chernoff bound for moderately correlated indicator random
variables (e.g., see Lemma 4 ) implies that

Pr [Z < sp/2] = o(1/n2).

Therefore Br(u) does not contain any replica of at least p/2
fraction of files cached at u, namely S′. Using the union bound
over all nodes we deduce the similar statement for every node
with probability at least 1−o(1/n). Therefore, for every u we
have,

Pr [u severs a request] ≥
|Br/2(u)|

n
· |S
′|

K
= Ω(1/n)

where it follows from |S′| = Θ(M), |Br/2(u)| = Θ(K/M).
Since there are n requests, it is easy to see that the load of
each server is bounded from below by a Poisson distribution
Po(c), where c is a constant. On the other hand, it is known
that (e.g., see [28] ) the maximum number taken by n Poisson
distribution Po(c) is Ω(log n/ log log n) w.h.p. and hence the
lower bound is proved.

Proof of Theorem 3: Assume a request from an arbitrary
node u for file Wj . The probability that this file is cached at
another node v is qj := 1−(1−pj)M . Cache content placement
at different nodes is independent. Thus, the number of nodes
which should be probed is a geometric random variable with
success probability qj . This results in the average 1/qj trials
that leads to expected distance of

Θ

(
1
√
qj

)
= Θ

(
1√

1− (1− pj)M

)
. (13)

When averaged over different files we will have

C =

K∑
j=1

pjΘ

(
1√

1− (1− pj)M

)
. (14)

• For uniform distribution we have pj = 1/K and then

C = Θ(
√
K/M). (15)

• For Zipf distribution with M = Θ(1) we have

C =

K∑
j=1

pjΘ

(
1√

1− (1− pj)M

)

=

K∑
j=1

pjΘ

(
1√
pjM

)

= Θ

 ∑K
j=1 j

−γ/2(
M
∑K
j=1 j

−γ
)1/2

 .

(16)

Define Λ(γ) :=
∑K
j=1 j

−γ , for every γ. On the other hand it
is known that for every γ > 0 (e.g., see [38])

Λ(γ) =

 Θ
(
K1−γ) , 0 < γ < 1,

Θ (logK) , γ = 1,
Θ(1), γ > 2.

(17)

Now inserting the above equations into (16) completes the
proof.

APPENDIX C
PROOF OF EXAMPLE 3

Proof: It is easy to see that for M = 1, the number of
caching servers with a specific file, say Wj denoted by Sj , is
distributed as a Bin(n, pj). Thus applying a Chernoff bound
for Sj (e.g., see Appendix A) implies that

Pr [|Sj −E [Sj ] | ≥ E [Sj ] /2] ≤ 2 exp(−pjn/12).

Moreover, let Rj denote the number of requests for file Wj ,
which is the sum of n i.i.d. Bin(n, pj) random variables. Again
applying a Chernoff bound (e.g., see Appendix A) for Poisson
random variables yields that

Pr [|Rj −E [Rj ] | ≥ E [Rj ] /2] ≤ 2 exp(−pjn/12).

Notice that E [Sj ] = E [Rj ] = npj . Suppose that Aj denotes
the event that |Sj −E [Sj ] | ≤ E [Sj ] /2 and |Rj −E [Rj ] | ≤
E [Rj ] /2. Then we have that Pr [Aj ] ≥ 1−4 exp(−pjn/12).
Also define Ej to be the event that two-choice model with
Sj bins (caching servers) and Rj balls (requests) achieves
maximum load Rj/Sj + Θ(log logSj). It is shown that this
event happens with probability 1−O(1/Scj ), for every constant
c (e.g., see [5]). So we have that

Pr [Ej ] = Pr [Ej |Aj ]Pr [Aj ] + Pr [Ej |¬Aj ]Pr [¬Aj ]
> (1− 2(pjn)−c)(1− 4 exp(−pjn/12))

+ (1− 2(pjn)−c)(4 exp(−pjn/12))

≥ 1− 8(pjn)−c.

Since we have K disjoint subsystems, the union bound over all
subsystems shows that the two choice model does achieve the
desired maximum load with probability 1−8

∑K
j=1(npj)

−c =
1−o(1) which concludes the proof due to example’s assump-
tion on popularity profile.



Now we show that the Uniform and Zipf distributions satisfy
the example’s assumption. When P is the Uniform distribution
over K files, ∀j, pj · n = nε. Now by setting c = 3/ε, we
have that

K∑
j=1

(npj)
−c = K(1/nε)c = K/n3 = o(1/n2).

Also, for Zipf distribution we have

pj =
j−γ∑K
j=1 j

−γ
=

j−γ

Λ(γ)
.

Depending on γ, we consider two cases,
• γ ≥ 1: For every c > 1 we have(

Λ(γ)

n

)c
Λ(γc) = Θ

(
logcK

nc

)
Λ(γc) = o(1),

where we used K < n and Equality (17).
• 0 < β < 1: By setting c = 2/γ and using the fact that
K < n, we have(

Λ(γ)

n

)c
Λ(γc) =Θ

(
K(1−γ)c

nc

)
≤ n(1−γ)c−cΛ(γc)

=n−γcΛ(γc) = o(1),

where we applied Equality (17).
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