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Abstract. We consider the random phone call model introduced by
Demers et al. [8], which is a well-studied model for information dissem-
ination on networks. One basic protocol in this model is the so-called
Push protocol which proceeds in synchronous rounds. Starting with a
single node which knows of a rumor, every informed node calls a ran-
dom neighbor and informs it of the rumor in each round. The Push-Pull
protocol works similarly, but additionally every uninformed node calls a
random neighbor and may learn the rumor from that neighbor.
While it is well-known that both protocols need Θ(log n) rounds to

spread a rumor on a complete network with n nodes, we are interested by
how much we can speed up the spread of the rumor by enabling nodes
to make more than one call in each round. We propose a new model
where the number of calls of a node u is chosen independently according
to a probability distribution R with bounded mean determined at the
beginning of the process. We provide both lower and upper bounds on
the rumor spreading time depending on statistical properties of R such
as the mean or the variance. If R follows a power law distribution with
exponent ∈ (2, 3), we show that the Push-Pull protocol spreads a rumor
in Θ(log log n) rounds.

1 Introduction

Rumor spreading is an important primitive for information dissemination in
networks. The goal is to spread a piece of information, the so-called rumor, from
an arbitrary node to all the other nodes. The random phone call model is based
on the simple idea that every node picks a random neighbor and these two nodes
are able to exchange information in that round. This paradigm ensures that the
protocol is local, scalable and robust against network failures (cf. [11]). Therefore
these protocols have been successfully applied in other contexts such as replicated
databases [8], failure detection [23], resource discovery [17], load balancing [3],
data aggregation [19], and analysis of the spread of computer viruses [2].

A basic protocol for spreading a rumor in the phone call model is the Push
protocol. At the beginning, there is a single node who knows of some rumor. Then
in each of the following rounds every informed node calls a random neighbor
chosen independently and uniformly at random and informs it of the rumor.
The Pull protocol is symmetric, here every uninformed node calls a random
neighbor chosen independently and uniformly at random, and if that neighbor
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happens to be informed the node becomes informed. The Push-Pull protocol is
simply the combination of both protocols. Most studies in randomized rumor
spreading concern the runtime of these protocols which is the number of rounds
required until a rumor initiated by a single node reaches all other nodes.

In one of the first papers in this area, Frieze and Grimmett [14] proved that
if the underlying graph is a complete graph with n nodes, then the runtime of
the Push protocol is log2 n + logn ± o(log n) with high probability1, where log
denotes the natural logarithm. This result was later strengthened by Pittel [22].
For the standard Push-Pull protocol, Karp et al. [18] proved a runtime bound
of log3 n + O(log logn). In order to overcome the large number of Θ(n log n)
calls, Karp et al. also presented an extension of the Push-Pull protocol together
with a termination mechanism that spreads a rumor in O(log n) rounds using
only O(n log logn) messages. More recently Doerr and Fouz [9] proposed a new
protocol using only Push calls with runtime (1+o(1)) log2 n using only O(n·f(n))
calls (and messages), where f(n) is an arbitrarily slow growing function.

Besides the complete graph, the randomized rumor spreading protocols men-
tioned above have been shown to be efficient also on other topologies. In particu-
lar, their runtime is at most logarithmic in the number of nodes n for topologies
ranging from basic networks, such as random graphs [11,12] and hypercubes [11],
random regular graphs [1], graphs with constant conductance [20,5,15], constant
weak conductance [4] or constant vertex expansion [16], to more complex struc-
tures including preferential attachment graphs modeling social networks [10,13].
In particular, recent studies establishing a sub-logarithmic runtime on certain
social network models [10,13] raise the question whether it is possible to achieve
a sub-logarithmic runtime also on complete graphs. In addition to analyses on
static graphs, there are also studies on mobile geometric graphs, e.g., [7,21], that
have deal with strong correlations as nodes are moving according to a random
walk.

Since the Push protocol, the Pull protocol and the Push-Pull protocol all re-
quire Θ(log n) rounds to spread the rumor on a complete graph, we equip nodes
with the possibility of calling more than one node in each round. Specifically,
we assume that the power of each node u, denoted by Cu is determined by a
probability distribution R on the positive integers which is independent of u. In
order to keep the overall communication cost small, we focus on distributions R
satisfying

∑
u∈V Cu = O(n) with high probability – in particular,R has bounded

mean. While being a natural extension from a theoretical perspective, different
Cu values could arise due to varying battery capacities, processor speeds or clock
synchronizations. Our aim is to understand the impact of the distribution R on
the runtime of randomized rumor spreading. In particular, we seek for conditions
on R which are necessary (or sufficient) for a sublogarithmic runtime.

Our first result concerns the Push protocol for the case where R has bounded
mean and bounded variance. As this is the most basic setting, our runtime bound

1 By with high probability we refer to an event which holds with probability 1− o(1)
as n → ∞. For simplicity, we sometimes omit the “with high probability” in the
introduction.
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is even tight up to low-order terms. To this end, let Tn = min{t | Pr [It = n] �
1 − g(n)} be the first round in which all nodes are informed with probability
1 − g(n), where g(n) is a function tending to zero as n goes to infinity (for
simplicity we do not specify g(n)).

Theorem 1.1. Consider the Push protocol and letR be a distribution withE [R]=
O(1) and Var [R]=O(1). Then |Tn − (log1+E[R] n+ logeE[R] n)|=o(log n).

Note that by putting R ≡ 1, we retain the classic result by Frieze and Grim-
mett for the standard Push protocol. If we drop the assumption on the variance,
then the theorem below provides a lower bound of Ω(log n). Although this result
is less precise than Theorem 1.1, it demonstrates that it is necessary to consider
the Push-Pull protocol in order to achieve a sub-logarithmic runtime.

Theorem 1.2. Assume that R is any distribution with E [R] = O(1). Then
with prob. 1− o(1), the Push protocol needs Ω(logn) rounds to inform all nodes.

We point out that the lower bound in Theorem 1.2 is tight up to constant factors,
as the results in [14,22] for the standard Push-Pull protocol already imply an
upper bound of O(log n) rounds. Next we consider the Push-Pull protocol and
extend the lower bound of Ω(log n) from Theorem 1.1.

Theorem 1.3. Assume thatR is anydistributionwithE [R] = O(1)andVar [R] =
O(1). Then for any constant ε > 0, with probability 1−ε thePush-Pull protocol needs
at least Ω(log n) rounds to inform all nodes.

Theorem 1.3 establishes that an unbounded variance is necessary to break
the Ω(log n) lower bound. An important distribution with bounded mean but
unbounded variance is the power law distribution with exponent β < 3, i.e., there
are constants 0 < c1 � c2 such that c1z

1−β � Pr [R � z] � c2z
1−β for any z � 1,

and Pr [R � 1] = 1. We are especially interested in power law distributions,
because they are scale invariant and have been observed in a variety of settings
in real life. Our main result below shows that this natural distribution achieves
a sublogarithmic runtime.

Theorem 1.4. Assume that R is a power law distribution with 2 < β < 3. Then
the Push-Pull protocol informs all nodes in Θ(log logn) rounds with prob. 1−o(1).

Notice that if R is a power law distribution with β > 3, then Theorem 1.3 ap-
plies because the variance of R is bounded. Hence our results reveal a dichotomy
in terms of the exponent β: if 2 < β < 3, then the Push-Pull protocol finishes in
O(log logn) rounds, whereas for β > 3 the Push-Pull protocol finishes in Θ(log n)
rounds 2. While a very similar dichotomy was shown in [13] for random graphs
with a power law degree distribution, our result here concerns the spread of the
rumor from one to all nodes (and not only to a constant fraction as in [13]).

2 We do not consider the case β � 2, since then there exists at least one node with
degree Ω(n) and the rumor is spread in constant time (additionally, E [R] is no
longer bounded). The analysis of the case β = 3 is an interesting open problem.
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In addition, the distribution of the edges used throughout the execution of the
Push-Pull protocol is different from the distribution of the edges in a power law
random graph, as the latter is proportional to the product of the two nodes
weights. Therefore it seems difficult to apply the previous techniques for power
law random graphs used for the average distance [6] and rumor spreading [13].

Besides the power law distribution, one may also consider a simple two point
distribution, where for instance, R = n with probability n−1 and R = 1 other-
wise. It is then straightforward to see that with constant probability, the Push-
Pull protocol informs all nodes in O(1) rounds. The same result also holds if
R = nε with probability n−ε and R = 1 otherwise. However, the power law
distribution is arguably a more natural distribution which occurs in a variety of
instances in practice.

Finally, we also show that it is crucial that the Cu’s do not change over time.
Instead, suppose we generate a new variable Ct

u according to the distribution R
for the number of calls made by node u in each round t. Then one can prove a
lower bound of Ω(logn) for the Push-Pull protocol for any distribution R with
bounded mean. Based on this lower bound it seems crucial to have a fixed set of
powerful nodes (i.e. nodes u with large Cu) in order to obtain a sublogarithmic
rumor spreading time.

2 Definitions and Notations

We now provide additional definitions and notations (note that the classic Push,
Pull and Push-Pull protocols have already been defined before). Here we gener-
alize the classic Push, Pull and Push-Pull to the following statistical model on a
complete graph with n nodes.

Before the protocol starts, every node u generates a random integer Cu � 1
according to a distribution R. Then, the rumor is placed on a randomly chosen
node3. Our generalized Push, Pull and Push-Pull protocol proceed like the classic
ones except that every (un)informed node u calls Cu node(s) chosen indepen-
dently and uniformly at random and sends (request) the rumor.

Let It be the set of all informed nodes in round t (which means after the
execution of round t) and Ut be the complement of It, i.e., the set of uninformed
nodes. The size of It and Ut are denoted by It and Ut. We indicate the set of
newly informed nodes in round t + 1 by Nt and its size is denoted by Nt. Let
St be the number of Push calls in round t + 1, so St =

∑
u∈It Cu � It. Let

us define N Pull
t and N Push

t to be the set of newly informed nodes by Pull and
Push calls in round t+ 1, respectively. The size of N Pull

t and N Push
t are denoted

by NPull
t and NPush

t . The size of every set divided by n will be denoted by the

3 This is equivalent to saying that the initial node which knows the rumor has to be
chosen without knowing the sequence Cu, u ∈ V. We make this assumption through-
out the paper, as it is frequently needed for lower bounding the runtime, e.g., the
lower bound in Theorem 1.2 may not hold if the rumor initiates from the node with
the largest Cu.
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corresponding small letter, so it, nt and st are used to denote It/n, Nt/n, and
St/n, respectively. Further, we define the set

L(z) := {u ∈ V : Cu � z}.

The size of L(z) is denoted by L(z). We define Δ to be maxu∈V Cu.

3 Push Protocol

3.1 Push Protocol with Bounded Variance (Thm. 1.1)

In this subsection we assume that the random numbers Cu’s are generated ac-
cording to some distribution R with bounded mean and variance. Recall that
Tn := min{t | Pr [It = n] � 1 − o(1)}, i.e., the first round in which all nodes
are informed with probability 1 − o(1). In Theorem 1.1 we show that if R is a
distribution with E [R] = O(1) and Var [R] = O(1), then |Tn − (log1+E[R] n +
logeE[R] n)| = o(log n).

To prove this result, we study the protocol in three consecutive phases. In the
following we give a brief overview of the proof.

– The Preliminary Phase. This phase starts with one informed node and
ends when It � log5 n and St � logO(1) n. Similar to the Birthday Paradox
we show that in each round every Push call informs a different uninformed
node and thus the number of informed nodes increases by St � It. Hence
after O(log logn) rounds there are at least log5 n informed nodes. Further,

since E [R] = O(1), after O(log logn) rounds we also have St � logO(1) n.

– The Middle Phase. This phase starts when log5 n � It � St � logO(1) n
and ends when It � n

log log n . First we show that the number of Push calls

St increases by a factor of approximately 1+E [R] as long as the number of
informed nodes is o(n). Then we prove that the number of newly informed
nodes in round t + 1 is roughly the same as St. Therefore an inductive
argument shows that it takes log1+E[R] n± o(log n) rounds to reach n

log logn
informed nodes.

– The Final Phase. This phase starts when It � n
log logn and ends when all

nodes are informed with high probability. In this phase, we first prove that
after o(log n) rounds the number of uninformed nodes decreases to n

log5 n
.

Then we show the probability that an arbitrary uninformed node remains

uninformed is e−E[R]±o( 1
log n ), so Ut decreases by this probability. Finally, an

inductive argument establishes that it takes logeE[R] n±o(logn) rounds until
every node is informed.

3.2 Push Protocol with Arbitrary Variance (Thm. 1.2)

We prove that if R is any distribution with E [R] = O(1), then with probability
1 − o(1) the Push protocol needs at least Ω(logn) rounds to inform all nodes.
In the Push protocol, in round t + 1, at most St randomly chosen uninformed
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nodes are informed. Hence the total contribution of newly informed nodes to
E [St+1] is at most E [R] · St. Applying the law of total expectation shows that
E [St+1] � (1 + E [R])t E [R] which implies that Ω(logn) rounds are necessary
to inform all nodes.

4 Push-Pull Protocol

4.1 Push-Pull Protocol with Bounded Variance (Thm 1.3)

In this part we consider the case where R is a distribution with bounded mean
and bounded variance. We prove that with probability at least 1− ε, the Push-
Pull protocol needs at least Ω(log n) rounds to inform all nodes. One interesting
example for a distribution R with bounded mean and bounded variance is a
power law distribution with parameter β > 3.

The crucial ingredient of the proof is to bound the Cu’s of the nodes that
become informed by using Pull, i.e., the Cu’s of uninformed nodes that call an
informed node. Note that the contribution of an uninformed node u ∈ Ut to
E [St+1] is Cu times the probability that it gets informed, which is at most
Cu · (It/n) � Cu · (St/n). Hence the contribution of u ∈ Ut is at most C2

u ·
(St/n). Now using the assumption that R has bounded variance, we have that∑

u∈V C
2
u = O(n) which implies that St increases only exponentially in t.

4.2 Push-Pull Protocol with Power Law Distr. 2 < β < 3 (Thm. 1.4)

In this section we analyze the Push-Pull protocol where R is a power law distri-
bution with 2 < β < 3 and show that it only takes Θ(log logn) rounds to inform
all with probability 1− o(1).

To prove the upper bound of O(log logn), we study the protocol in three
consecutive phases and show each phase takes only O(log logn) rounds. The
proof of the lower bound is ommitted in this extended abstract.

Proof of the Upper Bound. The following lemmas about Push will be used
throughout this section.

Lemma 4.1. Consider the Push protocol and suppose that St � logc n, where

c > 0 is any constant. Then with probability 1−O( log
2c n
n ) we have It+1 = It+St.

Lemma 4.2. Consider the Push protocol.Then with probability 1 − o( 1
log n ) we

have that st − 2s2t − 2
√

st log logn
n � nt � st.

We will also use the following fact about Power law distributions.

Lemma 4.3. Let {Cu : u ∈ V} be a set of n independent random variables and
assume that each Cu is generated according to a power law distribution with

exponent β > 2. Then for every z = O(n
1

β−1 / logn), it holds with probability
1− o( 1n )

n · c1 · z1−β

2
� L(z) � 3 · n · c2 · z1−β

2
.
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The Preliminary Phase. This phase starts with just one informed node and

ends when It � n
1

β−1 /(2 logn). Let T1 be the number of rounds needed so that

the number of informed nodes exceeds n
1

β−1 /(2 logn). We will show that with
probability 1− o(1), T1 = O(log logn). At first we prove the following lemma.

Lemma 4.4. Let c > 0 be any constant. Then with probability 1 − o(1), the
number of rounds needed to inform logc n nodes is bounded by O(log logn).

Proof. In order to prove our lemma we only consider Push calls and apply Lemma

4.1 which states that as long as St � logc n, with probability 1−O( log
2c n
n ),

It+1 = It + St � 2It.

Thus as long as St � logc n, in each round the number of informed nodes is at
least doubled. So we conclude that with probability 1−o(1), O(log logn) rounds
are sufficient to inform logc n nodes. 	


Lemma 4.5. With probability 1− o(1), T1 = O(log logn).

Proof. Let T0 be the first round when IT0 � log
2

3−β n. Let us define the constant
γ := 3−β

2(β−2) > 0. Let T be the first round such that

I
(1+γ)
T−1 � n

1
β−1 / logn < I

(1+γ)
T .

Now for any T0 � t � T , we can apply Lemma 4.3 and conclude that with
probability 1− o( 1

n ),

∑
u∈L(I1+γ

t )

Cu � L(I1+γ
t ) · I1+γ

t � n · c1 · I(1+γ)(2−β)
t

2
.

So,

It
n

∑
u∈L(I1+γ

t )

Cu � c1 · I1+(1+γ)(2−β)
t

2
=
c1 · I3−β+γ(2−β)

t

2
.

We will bound the probability that none of u ∈ L(I1+γ
t ) gets informed by Pull

calls in round t+ 1 as follows,

∏
u∈L(I1+γ

t )

(
1− It

n

)Cu

=

(
1− It

n

)∑
u∈L(I

1+γ
t )

Cu

� e−c1·I3−β+γ(2−β)
t = e−c1·I

3−β
2

t .

Since for any t � T0, It � log
2

3−β n, we have that with probability at least
1−n−c1 , at least one node in L(I1+γ

t ) gets informed by Pull in round t+1. Hence
we have that St+1 � I1+γ

t . Let us now consider the Push calls in round t + 2.
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By applying Lemma 4.1 we know that as long as St+1 = o(n) with probability
1− o( 1

log n ), St+1(1− o(1)) � Nt+1. Thus,

It+2 � It+1 + St+1(1− o(1)) >
I1+γ
t

2
.

An inductive argument shows that for any integer k � 1 as long as I1+γ
T0+2k−2 �

n
1

β−1 / logn, with probability 1− o( k
logn )

IT0+2k >

(
1

2

)∑k−1
i=0 (1+γ)i

I
(1+γ)k

T0
=

(
IT0

2γ

)(1+γ)k

· 21/γ >
(
log

2
3−β n

C′

)(1+γ)k

,

where C′ = 2γ = O(1). So we conclude that after T0 + 2k rounds, where k =

o(log1+γ logn), there are two cases: either IT0+2k � n
1

β−1 /(2 logn) which means
T1 � T0 + 2k = O(log logn) and we are done, or

IT0+2k < n
1

β−1 /(2 logn) < n
1

β−1 / logn < I1+γ
T0+2k.

In the latter case, we change the value γ to γ′ which satisfies I1+γ′
T0+2k = n

1
β−1 / logn

and a similar argument shows that

IT0+2k+2 � n
1

β−1 /(2 logn).

	


The Middle Phase. This phase starts with at least n
1

β−1 /(2 logn) informed nodes
and ends when It � n

logn . Let T2 be the first round in which n
log n nodes are in-

formed. We will show that T2−T1 = O(log logn). In contrast to the Preliminary
Phase where we focus only on an informed node with maximal Cu, we now con-
sider the number of informed nodes u with a Cu above a certain threshold Zt+1

which is inversely proportional to It.

Lemma 4.6. Suppose that It � n
1

β−1 /(2 logn) for some round t. Let Zt+1 :=
n log log n

It
. Then with probability 1− o( 1

n ),

|L(Zt+1) ∩ It+1| �
1

4
L(Zt+1).

Proof. We consider two cases. If at least 1
4 of the nodes in L(Zt+1) are already

informed (before round t+1), then the statement of the lemma is true. Otherwise
|L(Zt+1) ∩ Ut+1| > 3

4L(Zt+1). In the latter case, we define

L′(Zt+1) := L(Zt+1) ∩ Ut+1.

Let Xu be an indicator random variable for every u ∈ L′(Zt+1) so that Xu = 1
if u gets informed by Pull in round t+ 1 and Xu = 0 otherwise.
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Then we define a random variable X to be X :=
∑

u∈L′(Zt+1)
Xu. Since for

every u ∈ L′(Zt+1), Cu � Zt+1 = n log logn
It

, it follows that

Pr [Xu = 1] = 1−
(
1− It

n

)Cu

� 1−
(
1− It

n

)Zt+1

= 1− e−Ω(log log n) = 1− o(1).

Thus Pr [Xu = 1] > 3
4 and E [X ] =

∑
u∈L′(Zt+1)

Pr [Xu = 1] > 3
4 |L′(Zt+1)|.

Since |L′(Zt+1)| = |L(Zt+1) ∩ Ut+1| > 3
4L(Zt+1), E [X ] � 9

16L(Zt+1). We know

that It � n
1

β−1 /(2 logn) and also It is a non-decreasing function in t, so

Zt+1 =
n log logn

It
� 2 · n

β−2
β−1 log n log logn < n

1
β−1 /logn,

where the last inequality holds because β < 3. Now we can apply Lemma 4.3
(see appendix) to infer that with probability 1− o( 1

n ),

L(Zt+1) �
n · c1 · Z1−β

t+1

2
� c1 · logβ−1 n

2
.

Therefore, E [X ] � 9·c1·logβ−1 n
32 . Then applying a Chernoff bound results into

Pr

[
X <

E [X ]

2

]
� Pr

[
|X −E [X ] | � E [X ]

2

]
< 2e−

E[X]
10 � 2e−Ω(logβ−1 n).

So with probability 1− o( 1n ), we have that

|L(Zt+1) ∩ It+1| � X � E [X ]

2
>

3|L′(Zt+1)|
8

� 1

4
L(Zt+1),

where the last inequality holds because |L′(Zt+1)| > 3
4L(Zt+1). 	


Lemma 4.7. With probability 1− o(1), T2 − T1 = O(log logn).

Proof. Since It � n
1

β−1 /(2 logn), Zt+1 = n log logn
It

< n
1

β−1 / logn, using Lemma

4.6 results into a lower bound for |L(Zt+1)∩It+1|. So with probability 1− o( 1n ),

St+1 =
∑

u∈It+1

Cu � |L(Zt+1 ∩ It+1)| · Zt+1 � 1

4
L(Zt+1) · Zt+1.

By applying Lemma 4.3, we conclude that with probability 1− o( 1
n ), L(Zt+1) �

n·c1·Z1−β
t+1

2 . Therefore, with probability 1 − o( 1
n ), St+1 � n·c1·Z2−β

t+1

8 . As long as
St+1 = o(n), we can apply Lemma 4.2 for the Push protocol to round t + 2
implying that with probability 1− o( 1

logn ),

It+2 = It+1 +Nt � It+1 + St+1(1− o(1)).



Faster Rumor Spreading with Multiple Calls 455

Thus,

It+2 >
St+1

2
� c1

16
n · Z2−β

t+1 =
c1
16

· n3−β · log log2−β n · Iβ−2
t .

By an inductive argument, we obtain that for any integer k � 1 with St+k = o(n),
it holds with probability 1− o( k

logn ),

It+2k >
( c

16
n3−β · log log2−β n

)∑k−1
i=0 (β−2)i

I
(β−2)k

t

=
( c

16
n3−β · log log2−β n

) 1−(β−2)k

3−β

I
(β−2)k

t .

Therefore there exists k = O(log 1
β−2

logn) such that

It+2k �
( c

16
n3−β · log log2−β n

) 1−O(1/ log n)
3−β

I
1/ logn
t

= Ω

(
n1−O(1/ logn)

( c

16
· log log2−β n

) 1−O(1/ log n)
3−β

)
= Ω

(
n

log logδ n

)
,

where δ = β−2
3−β (1 − O(1/ logn)) > 0. Hence T2 � T1 + 2k = T1 + O(log logn)

with probability 1− o(1). 	


The Final Phase. This phase starts with at least n
log n informed nodes. Since

the runtime of our Push-Pull protocol is stochastically smaller than the runtime
of the standard Push-Pull protocol (i.e. Cu = 1 for every u ∈ V ), we simply
use the result by Karp et. al in [18, Theorem 2.1] for the standard Push-Pull
protocol which states that once It � n

logn , additional O(log logn) rounds are

with probability 1− o(1) sufficient to inform all n nodes.
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