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Abstract

The balls-into-bins model randomly allocates n sequential balls into n bins, as follows: each
ball selects a set D of d > 2 bins, independently and uniformly at random, then the ball is
allocated to a least-loaded bin from D (ties broken randomly). The maximum load is the
maximum number of balls in any bin. In 1999, Azar et al. showed that, provided ties are
broken randomly, after n balls have been placed the maximum load, is log

d
log n+O(1), with

high probability. We consider this popular paradigm in a dynamic environment where the bins
are structured as a dynamic hypergraph. A dynamic hypergraph is a sequence of hypergraphs,
say H

(t), arriving over discrete times t = 1, 2, . . ., such that the vertex set of H(t)’s is the set
of n bins, but (hyper)edges may change over time. In our model, the t-th ball chooses an edge
from H

(t) uniformly at random, and then chooses a set D of d > 2 random bins from the
selected edge. The ball is allocated to a least-loaded bin from D, with ties broken randomly.
We quantify the dynamicity of the model by introducing the notion of pair visibility, which
measures the number of rounds in which a pair of bins appears within a (hyper)edge. We
prove that if, for some ε > 0, a dynamic hypergraph has pair visibility at most n1−ε, and
some mild additional conditions hold, then with high probability the process has maximum
load O(log

d
log n). Our proof is based on a variation of the witness tree technique, which is of

independent interest. The model can also be seen as an adversarial model where an adversary
decides the structure of the possible sets of d bins available to each ball.

1 Introduction

The standard balls-into-bins model is a process that randomly allocates m sequential balls into
n bins, where each ball chooses a set D of d bins, independently and uniformly at random, then
the ball is allocated to a least-loaded bin from D (with ties broken randomly). When m = n and
d = 1, it is well known that at the end of process the maximum number of balls at any bin, the
maximum load, is (1 + o(1)) log n

log logn , with high probability. Surprisingly, Azar et al. [2] showed
that for this d-choice process with d > 2, provided ties are broken randomly, the maximum load
exponentially decreases to logd logn+O(1). This phenomenon is known as the power of d choices.
The multiple-choice paradigm has been successfully applied in a wide range of problems from nearby
server selection, and load-balanced file placement in the distributed hash table, to the performance
analysis of dictionary data structures (e.g., see [21]). In the classical setting, all

(

n
d

)

sets of d bins
are available to each ball. However, in many realistic scenarios such as cache networks, peer-to-
peer or cloud-based systems, the balls (requested files, jobs, items,..) have to be allocated to bins
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(servers, processors,...) that are close to them, in order to minimize the access latencies. On the
other hand, the lack of perfect randomness stimulates the de-randomization of the d-choice process,
which also requires the study of non-uniform distributions over choices (e.g. [1, 6, 7, 11]). Hence in
many settings, allowing all possibilities for the set D of d bins is costly, and may not be practical.
This motivates the investigation of the effect of distributions of the set D on the maximum load.
In this regard, Kenthapadi and Panigrahy [13] proposed balanced allocation on graphs, where bins
form the vertices of a ∆-regular graph and each ball chooses an edge of the graph uniformly at
random. The ball is then placed in an endpoint of the selected edge with smaller load (ties are
broken randomly). Kenthapadi and Panigrahy showed that the maximum load is Θ(log logn) if and
only if ∆ = nΩ(1/ log logn). Here, one may see that the possibilities for the set D (the two chosen
bins) is restricted to the set of n∆/2 edges of the graph. In the standard balls-into-bins model
with d = 2, the underlying graph is a complete graph (all

(

n
2

)

edges present). Following the study
of balls-into-bins with related choices, Godfrey [12] utilized hypergraphs to model the structure of
bins. In this model, each ball picks a random edge of a given hypergraph that contain Ω(logn) bins
and the hypergraph satisfies some mild conditions. Then, the ball is allocated to a least-loaded
bin contained in the edge, with ties broken randomly. Godfrey showed that the maximum load is
constant. Balanced allocation on graphs and hypergraphs has been further studied in [3, 4, 18, 19].
In the aforementioned works, either the underlying graph is fixed during the process or, in the
hypergraph setting, the number d of choices satisfies d = Ω(logn). However, in many real-world
systems the structure may change over time, and probing the load of Ω(log n) bins might be a costly
task. Seeking a more realistic model, this paper studies the d-choice process in dynamic graphs and
hypergraphs, where 2 6 d = o(log n).

Balanced allocation on dynamic hypergraphs can also be seen as an adversarial model, where
the set D of potential choices is proposed by an adversary (environment) whose goal is to increase
the maximum load. Here we want to understand the conditions under which the balanced allocation
on dynamic (hyper)graphs still benefits from the effect of the power of d choices.

1.1 Our Results

We propose balanced allocation algorithms on different dynamic environments, namely dynamic
graph and hypergraph models. In order to measure the dynamicity, we introduce the notion of
pair visibility. For a pair {i, j} of distinct vertices, the visibility of {i, j}, denoted by vis(i, j), is
the number of rounds t ∈ {1, . . . , n} such {i, j} is contained in the edge chosen at round t. (A
more formal definition is given below.) When ball i is placed into a bin, the height of ball i is the
number of balls that were allocated to the bin before ball i. We say that event En holds with high
probability (w.h.p.) if Pr [En] > 1− n−c for every constant c > 0.

Balanced Allocation on Dynamic Hypergraphs

Write [n] = {1, . . . , n} to be the set of n bins. A hypergraph H = ([n], E) is s-uniform if |H | = s
for every H ∈ E . For every integer n > 1, let s = s(n) be an integer such 2 6 s 6 n. A dynamic
s-uniform hypergraph, denoted by (H(1),H(2), . . . ,H(n)), is a sequence of s-uniform hypergraphs
H(t) = ([n], Et) with vertex set [n]. The edge sets Et may change with t. A hypergraph is regular if
every vertex is contained in the same number of edges.

In this paper, we are interested in the following properties which dynamic hypergraphs may
satisfy. We refer to these properties as the balancedness, visibility, and size properties. The bal-
ancedness property is adapted from [3, 12].

Balancedness: Let Ht denote a randomly chosen edge from Et. If there exists a constant
β > 1 such that Pr [i ∈ Ht] 6 βs/n for every 1 6 t 6 n and each bin i ∈ [n], then the
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dynamic hypergraph (H(1), . . .H(n)) is β-balanced. A dynamic hypergraph is balanced if it is
β-balanced for some constant β > 1. Every regular hypergraph is 1-balanced.

Visibility: For every pair of distinct vertices {i, j} ⊂ [n], the visibility of {i, j} is

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ⊂ H ∈ Et}| .
If there exists a constant ε ∈ (0, 1) such that vis(i, j) 6 sn1−ε for all pairs {i, j} ⊆ [n] of dis-
tinct bins then the dynamic hypergraph (H(1), . . . ,H(n)) is ε-visible. A dynamic hypergraph
satisfies the visibility property if it is ε-visible for some constant ε ∈ (0, 1).

Size: If s = Ω(logn) and there exists a positive constant c0 > 1 such that |Et| 6 nc0 for
every t > 1, then the dynamic hypergraph (H(1), . . . ,H(n)) satisfies the c0-size property. A
dynamic hypergraph satisfies the size property if it satisfies the c0-size property for some
constant c0 > 1.

Definition 1 (Balanced Allocation on Dynamic Hypergraphs). Suppose that (H(1), . . . ,H(n)) is an
s-uniform hypergraph and fix d = d(n) with 2 6 d = o(log n) and d 6 s. The balanced allocation
algorithm on (H(1), . . . ,H(n)) proceeds in rounds (t = 1, 2, . . . , n), sequentially allocating n balls to
n bins. In round t, the t-th ball chooses an edge Ht uniformly at random from Et, then it randomly
chooses a set Dt of d bins from Ht (without repetition) and allocates itself to a least-loaded bin
from Dt, with ties broken randomly.

Theorem 2. Let (H(1), . . . ,H(n)) be a dynamic s-uniform hypergraph which satisfies the balanced-
ness, ε-visibility and size properties. Fix d = d(n) such that 2 6 d = o(log n). There exists
Θ(n) 6 m 6 n such that after the balanced allocation process on (H(1), . . . ,H(n)) has allocated m
balls, the maximum load is logd logn+O(1/ε) with high probability. Moreover, for every fixed positive
integer γ with γm 6 n, after allocating γm balls the maximum load is at most γ(logd logn+O(1/ε)),
w.h.p..

Remark 3. In our result we only consider the case where d = o(log n), because when d = Ω(logn),
a constant upper bound is obtained by [12]. The size property is mainly assumed for technical
reasons. For instance, |Et| 6 poly(n) is not necessary. Roughly speaking, balanced allocation on
a dynamic hypergraph with large |Et| resembles the standard balls-into-bins process. So it might
be possible that having more structural information about a dynamic hypergraph would enable
us to extend our result to allow an arbitrary number of edges |Et|. Another possible extension of
Theorem 2 would be to allow s to be a function of d.

The proof of Theorem 2 is based on the witness tree technique (see [1, 11, 16, 20] for example).
First, we define a certain structure corresponding to the allocation process and claim that the
structure exists with very small probability (i.e., n−O(1)). Second, we will deterministically show
that if the maximum load is higher than a certain threshold, then this structure must exist. Putting
these together, we obtain an upper bound for the maximum load, with high probability. This
approach is of independent interest and might be applied for the study of random hypergraphs.
The proof is given in Section 2.

Finally, in the following theorem we show that ε-visibility can also lead to a lower bound on
the maximum load achieved by the balanced allocation process on hypergraphs. This theorem is
proved in Appendix A.

Theorem 4. Let s = s(n) = nε, where ε ∈ (0, 1) is an arbitrary small real number. There exists a
dynamic s-uniform hypergraph, say (H(1), . . . ,H(n)), which satisfies the balancedness condition and
(trivially) satisfies the ε-visibility condition. Let 2 6 d 6 s be any integer which is constant. Suppose
that the balanced allocation process on (H(1), . . . ,H(n)) has allocated n balls, then the maximum load
is at least min{Ω(1/ε), Ω(logn/ log logn)} with high probability.
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Balanced Allocation on Dynamic Graphs

A dynamic graph is a special case of a dynamic hypergraph, where s = s(n) = 2 for all n. Write
(G(1), . . . , G(n)) to denote a dynamic graph, where G(t) = ([n], Et) for t = 1, 2, . . . , n. Theorem 2
does not cover the case of graphs (s = 2), due to the size property. We will prove a result on
balanced allocation for regular dynamic graphs.

Definition 5 (Balanced Allocation on Dynamic Graphs). Suppose that (G(1), . . . , G(n)) is a regular
dynamic graph on vertex set [n]. The balanced allocation algorithm on (G(1), . . . , G(n)) proceeds in
rounds (t = 1, . . . , n). In each round t, the t-th ball chooses an edge of G(t) uniformly at random,
and the ball is then placed in one of the bins incident to the edge with a lesser load, with ties broken
randomly.

Say that the dynamic graph is regular if G(t) is ∆t-regular for some positive integer ∆t and all
t = 1, 2, . . . , n. For every pair of distinct bins {i, j} ⊂ [n], we will assume that the visibility vis(i, j)
satisfies

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ∈ Et}| 6 2n1−ε

for some constant ε ∈ (0, 1). This property is called ε-visibility.

Theorem 6. Let (G(1), . . . , G(n)) be a regular dynamic graph which satisfies the ε-visibility con-
dition, for some ε ∈ (0, 1). Suppose that the balanced allocation process on (G(1), . . . , G(n)) has
allocated n balls. Then the maximum load is at most log2 logn+O(1/ε), with high probability.

The proof, which can be found in Section 3, is again based on the witness tree technique. We
remark that Theorem 6 can be extended to the case where the dynamic graph is almost regular,
meaning that the ratio of the minimum and maximum degree of G(t) is bounded above by an
absolute constant for t = 1, . . . , n.

Dynamic Graphs and Hypergraphs with Low Pair Visibility

In order to show the ubiquity of the visibility condition, we will describe some dynamic graphs
with low pair visibility. One can easily construct a dynamic hypergraph from a dynamic graph
by considering the r-neighborhood of each vertex of the t-th graph as a hyperedge in the t-th
hypergraph, for t = 1, . . . , n.

• Dynamic Cycle. For t = 1, . . . , n define the edge set

Et = {{i, j} ⊂ {0, . . . , n− 1} | j = i+ ⌈t/√n⌉ (mod n) or i = j + ⌈t/√n⌉ (mod n)},

where calculations are performed modulo n (that is, in the additive group Zn). In modular
addition, for every pair {i, j} ⊂ {0, . . . , n − 1}, the equation i = j + k (mod n) has at most
one solution 1 6 k 6

√
n and hence

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ∈ Et}| 6
√
n.

Now C(t) = ({0, 1, . . . , n− 1}, Et) is 2-regular, so it is either a Hamilton cycle or a union of
two or more disjoint cycles (depending on whether t and n are coprime). By Theorem 6, the
maximum load attained by the algorithm on {C(t), t = 1, . . . , n} is at most log2 logn+O(1).
The analysis of the balanced allocation algorithm on ∆-regular graphs given by Kenthapadi
and Panigrahy [13] showed that the balanced allocation process on arbitrary ∆-regular graphs
has maximum load Θ(log logn) only when ∆ = nΩ(1/ log logn). By contrast, here each C(t) has
degree at most 2, but the visibility condition keeps the maximum load as low as the standard
two-choice process.
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Remark 7. By Theorem 6, w.h.p., the balanced allocation process on the dynamic cycle
achieves the maximum load at most log2 logn + O(1). Since |Et| = n for t = 1, . . . , n, each
ball requires log2 n random bits. However, in the standard power-of-two-choices process, each
ball chooses two independent and random bins, which requires 2 logn random bits. Therefore,
the dynamic cycle can be used to reduce (by half) the number of random bits required in the
standard two-choice process.

• Dynamic Modular Hypergraph. Suppose that n is a prime number and fix s = s(n) such that

logn 6 s 6 n1/5. (Here n is large enough so that this range is non-empty.) For t = 1, . . . , n,
let kt = ⌈√n⌉+ ⌈ t

n3/4 ⌉ and for each α ∈ Zn define

Ht(α) = {α+ jkt (mod n) | j = 0, 1, . . . , s− 1 }.

Then Ht(α) is a subset of Zn of size s, as n is prime. Now for each t = 1, . . . , n we define the
dynamic s-uniform hypergraph H(t) = (Zn, Et), where Et = {Ht(α) | α ∈ Zn}. Then H(t) is
s-regular, and hence 1-balanced, and it satisfies the 1-size property as |Et| = n. Suppose that
{β1, β2} ⊂ Ht(α) for some α ∈ Zn, with β1 6= β2. Then there exists j1, j2 ∈ {0, . . . , s−1} such
that β1 = α+ j1kt (mod n) and β2 = α+ j2kt (mod n). Thus, β2 − β1 = (j2 − j1)kt (mod n).
Note that j1, j2 must be distinct as β1, β2 are distinct. Next suppose that kt1 6= kt2 for some
t1, t2 ∈ {1, . . . , n}, and take any j1, j2 ∈ {1, . . . , s− 1}. By definition of kt and working in Z,
we see that

1 6 |j2kt2 − j1kt1 | 6 (s− 1)
(

⌈√n⌉+ ⌈n1/4⌉
)

< n,

and it follows that
j1kt1 6= j2kt2 (mod n). (1)

Finally, suppose that some distinct β1, β2 satisfy {β1, β2} ⊂ Ht1(α)∩Ht2(α) where kt1 6= kt2 .
Then β2 − β1 = jkt1 (mod n) for some j1 ∈ {1, . . . , s − 1}, and β2 − β1 = j2kt2 (mod n) for
some j2 ∈ {1, . . . , s − 1}, but this contradicts (1). Therefore, by definition of kt, for every
{β1, β2} ⊂ Zn, we have

vis(β1, β2) = |{t ∈ {1, 2, . . . , n} | {β1, β2} ⊂ Ht(α) for some α ∈ Zn}| 6 O(n3/4).

• Stationary Geometric Mobile Network. Consider an R-dimensional torus Γ(n,R), which is a

graph whose vertex set is the Cartesian product of ZR
ℓ = Zℓ × . . .× Zℓ, where ℓ = n1/R ∈ Z,

and two vertices (x1, . . . , xR) and (y1, . . . , yR) are connected if for some j ∈ {1, 2 . . . , R}
xj = yj ± 1 mod n and for all i 6= j we have xi = yi. Let π be the stationary distribution
of the following random walk on Γ(n,R): at each step, the walker stays at the current vertex
with probability p, and otherwise chooses a neighbour randomly and moves to that neighbour.
The transition probability from vertex u to a neighbouring vertex w is (1−p)/(2R), where 2R
is the degree of vertex u in Γ(n,R). Now place n agents on vertices of Γ(n,R) independently,
each according to the distribution π. At each time step, each agent independently performs a
step of the random walk described above (For random walks on a torus we refer the interested
reader to [15]). For every pair of distinct agents a and b, let dt(a, b) denote the Manhattan
distance (in Γ) of the locations of a and b at time t. For a given r > 1, we define the

communication graph process {G(t)
r | t = 0, 1, . . .} over the set of agents, say A, so that for

every t > 0, agents a and b are connected if and only if dt(a, b) 6 r. The model has been
thoroughly studied when R = 2 in the context of information spreading [9]. We present the
following result regarding the pair visibility of the communication graph process, proved in
Appendix B.
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Proposition 8. Fix r = r(n) = no(1). Also let {G(t)
r = (A,Et) | 1 6 t 6 n} be the

communication graph process defined on an R-dimensional torus Γ(n,R). Then there exists
constant ε > 0 such that for every pair of agents, say {a, b} ⊂ A,

vis(a, b) = |{t ∈ {1, 2, . . . , n} | {a, b} ∈ Et}| = O(n1−ε).

1.2 Related Works

As we discussed, in the standard balls-into-bins, each ball picks a set of d choices from n bins, inde-
pendently and uniformly at random. One of the first algorithms considering a different distribution
over the bins is called always-go-left proposed by Vöcking [20]. In this algorithm, the bins are par-
titioned into d groups of size n/d and each ball picks one random bin from each group. The ball is
then allocated to a least-loaded bin among the chosen bins, with ties broken in favor of the bin from
the least-indexed group. The algorithm uses exponentially smaller number of choices and achieve a
maximum load of log logn

dφd
+O(1), where 1 6 φd 6 2 is an specified constant. Byers et al. [5] studied

a model, where n bins are uniformly at random placed on a geometric space. Then each ball, in
turn, picks d locations in the space. Corresponding to these d locations, the ball probes the load
of d bins that have the minimum distance from the locations. The ball then allocates itself to one
of the d bins with minimum load. In this scenario, the probability that a location close to a bin is
chosen depends on the distribution of other bins in the space and hence there is not a uniform distri-
bution over the potential choices. Here, the authors showed the maximum load is logd logn+O(1).
Later on, Kenthapadi and Panigrahy [13] proposed a graphical balanced allocation in which bins
are interconnected as a s-regular graph and each ball picks a random edge of the graph. It is then
placed in one of its endpoints with a smaller load. This allocation algorithm results in a maximum

load of log logn+O
(

logn
log(s/ log4 n)

)

+O(1). Godfrey [12] studied balanced allocation on hypergraphs

where each ball probes the bins contained in a random edge of size Ω(logn). In [3, 12], the bal-
anced allocation process on hypergraphs was studied where number of choices is d = Ω(logn). The
analysis involves the second moment method (Chernoff bounds), and lower bound on d is needed
in order to achieve concentration. Hence it is unlikely that the techniques of [3,12] can be extended
to the range d = o(logn). Peres et al. [18] also considered balanced allocation on graphs where the
number of balls m can be much larger than n (i.e., m ≫ n) and the graph is not necessarily regular
and dense. Then, they established upper bound O(log n/σ) for the gap between the maximum
and the minimum loaded bin after allocating m balls, where σ is the edge expansion of the graph.
Bogdan et al. [4] studied a model where each ball picks a random vertex and performs a local search
from the vertex to find a vertex with local minimum load, where it is finally placed. They showed
that when the graph is a constant degree expander, the local search guarantees a maximum load of
Θ(log logn). Pourmiri [19] substitutes the local search by non-backtracking random walks of length
ℓ = o(logn) to sample the choices and then the ball is allocated to a least-loaded bin. Provided
the underlying graph has sufficiently large girth and ℓ, he showed the maximum load is a constant.
In the context of hashing (e.g., [1, 11]), authors apply the witness graph techniques to analyze the
maximum load in the balls-into-bins process where the bins are picked based on tabulation.

2 Balanced Allocation on Dynamic Hypergraphs

In this section we establish an upper bound for the maximum load attained by the balanced alloca-
tion on hypergraphs (i.e., Theorem 2). In order to analyze the process let us first define a conflict
graph. We write Dt for the set of d bins chosen by the t-th ball, and sometimes refer to Dt as the
d-choice of the t-th ball. We will slightly abuse the notation and write Du ∩Dt, Du ∪Dt to denote
the set of common bins, and the union of bins, chosen by balls u and t, respectively.
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Definition 9 (Conflict Graph). For m = 1, . . . , n, the conflict graph Cm is a simple graph with
vertex set {D1, D2, . . . , Dm}. Vertices Du and Dt are connected by an edge in Cm if and only if
Du ∩Dt 6= ∅ (that is, the d-choices of the t-th ball and the u-th ball contain a common bin).

We say a subgraph of Cm with vertex set {Dt1 , . . . , Dtk} is c-loaded if every bin in Dt1 ∪Dt2 ∪
· · · ∪Dtk has at least c balls.

Our analysis will involve a useful combinatorial object, called an ordered tree. An ordered tree is
a rooted tree, together with a specified ordering of the children of every vertex. Recall that 1

k+1

(

2k
k

)

is the k-th Catalan number, which counts numerous combinatorial objects, including the number
of ways to form k balanced parentheses. It is well known [17] that ordered trees with k − 1 edges
are counted by the (k − 1)-th Catalan number, leading easily to the following proposition.

Proposition 10. The number of k-vertex ordered trees is 1
k

(

2k−2
k−1

)

6 4k−1.

More information regarding the enumeration of trees can be found in [14].
The following blue-red coloring will be very helpful in our analysis.

Definition 11 (Blue-red coloring). Given m ∈ {1, 2, . . . , n}, suppose that T ⊂ Cm is a rooted and
ordered k-vertex tree contained in Cm. Let the vertex set of T be {Dt1 . . . , Dtk}, where Dt1 is
the root. Perform depth-first search starting from the root, respecting the specified order of each
vertex. For i = 1, . . . , k, let D(i) ∈ {Dt1 . . . , Dtk} be the vertex which is the i-th visited vertex in
the depth-first search. Then D(1) = Dt1 is the root. for j = 1, . . . , k. We now define a blue-red
coloring col : {D(2), . . . , D(k)} → {blue, red} as follows. For i = 2, . . . , k,

col(D(i)) =

{

blue if | (∪i−1
j=1D(j)) ∩D(i)| = 1,

red if | (∪i−1
j=1D(j)) ∩D(i)| > 2.

The following key lemma presents a upper bound for the probability that a certain tree can be
found as a subgraph of Cm.

Lemma 12 (Key Lemma). Let (H(1), . . . ,H(n)) be a dynamic s-uniform hypergraph which satisfies
the β-balanced, ε-visibility and c0-size properties. Suppose that c > 0 is an arbitrary constant and
k = C logn for some constant C > 1. There exists Θ(n) 6 m 6 n such that the probability that Cm
contains a c-loaded k-vertex tree with r red vertices in its blue-red colouring is at most

nc0+3 exp{4k log(2βd)− rε log(n)/2− c(d− 1)(k − r − 1)}.

Moreover, with high probability, r = O(1/ε).

The proof, presented in Appendix C, involves an extension of the witness tree technique. This
method might be of independent interest in the study of random hypergraphs.

We now explain how to recursively build a witness graph if there exists a bin whose load is
higher than a certain threshold. The minimum load of Dt is the number of balls in the least-loaded
bin in Dt (the set of d choices of Dt). Clearly, if ball t is placed at height h then Dt has minimum
load at least h.

Construction of the Witness Graph Suppose that there exists a bin with load ℓ+ c+ 1. Let
R be the d-choice corresponding to the ball at height ℓ+ c in this bin. Then the minimum load of
R is ℓ+ c. We start building the witness tree in Cm whose root is R. For every bin i ∈ R, consider
the ℓ balls in bin i at height ℓ + c − j, for j = 1, . . . , ℓ, and let Di

tj be the d-choice corresponding
to the ball in bin i with height ℓ+ c− j. These ℓ balls exist as the minimum load of R is ℓ+ c. We
refer to set {Di

tj | i ∈ R, 1 6 j 6 ℓ} as the set of children of R, where the minimum load of Di
tj
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is ℓ + c − j − 1. All children of R are connected to R in Cm. Order the children of R arbitrarily,
then blue-red colour the first level of the tree (the children of R). Recall that a vertex is colored by
blue if it only shares one bin with its predecessors in the ordering. So a blue d-choice contains d− 1
bins that have not appeared in previous d-choices (with respect to depth-first search, respecting the
fixed ordering). We call these d− 1 bins fresh.

Next, consider each blue vertex of the tree (if any), and recover the d-choices corresponding to
balls that are placed in fresh bins with height at least c. Then, blue-red color the children of those
d-choices, with respect to an arbitrary ordering. This recursion will continue until either there are
no balls remaining with height at least c, or there are no blue vertices. For j = 1, . . . , ℓ, let f(ℓ− j)
denote the number of d-choices that the recursive construction gives, when the d-choice for the root
has minimum load ℓ + c− j − 1. Provided all vertices are colored blue, the recursive construction
continues until no ball remains with height at least c. Therefore, a simple calculation shows that

f(ℓ) > (d− 1)(f(ℓ− 1) + f(ℓ− 2) + · · ·+ f(0) + 1),

where f(0) = 1. Solving the above recursive formula shows that f(ℓ) > 2(d− 1)dℓ−1 > dℓ.

Proof of Theorem 2. Let (H(1), . . . ,H(n)) be a dynamic hypergraph which satisfies the β-balanced,
ε-visibility and c0-size properties. By Lemma 12, there exists Θ(n) = m 6 n such that the following
holds with high probability: after m balls have been allocated by the balanced allocation process,
if T ⊆ Cm is a c-loaded tree with k vertices and T is blue-red coloured according to some arbitrary
ordering of the children of each vertex, then the number r of red vertices satisfies r = O(1/ε). So
we are able to find a constant c2 > 0 such that, with high probability, r < c2 · d.

Now suppose that after allocating m balls, there is a ball at height ℓ+ c1 + c2 +1. This implies
that there is a d-choice, denoted by R, whose minimum load is at least ℓ+c1+c2+1. Let us consider
all balls placed in the bins contained in R with height at least ℓ+ c1+1. Recover the corresponding
d-choices for these balls, say D1, D2, . . . , Dw, then colour them blue-red with respect to the root R
and an arbitrary ordering of the children of each vertex. Since w > c2 · d, w.h.p., there are b > 1
blue vertices and w − b red vertices. We now consider every blue vertex Dt ∈ {D1, D2, . . . , Dw} as
a root and start the recursive construction of the witness graph. Assuming that the number of red
vertices is strictly less than c2 · d < w, it follows that at least one recursive construction (with root
Di) does not produce any red vertex. Moreover, the recursion from Di gives a c1-loaded tree with
at least k = dℓ vertices. We take ℓ = logd logn, so that k = logn. Another application of Lemma 12
implies that a c1-loaded k-vertex tree with no red vertices exists with probability at most

nc0+3 exp{4k log(2βd)− c1(d− 1)(k − 1)} 6 exp
{(

c0 + 4 + 4 log(2βd)− c1(d− 1)
)

logn
}

6 exp
{(

c0 + 4 + 4 log(4β)− c1
)

logn
}

,

using the fact that 2 6 d = o(log n) and k = logn. Setting c1 to be a large enough positive constant,
we conclude that with high probability the maximum load is at most

logd logn+O(1) + c2 = logd logn+O(1/ε),

where c2 = O(1/ε). This proves the first statement of Theorem 2. The proof of the second statement
is presented in Appendix D.

3 Balanced Allocation on Dynamic Graphs

In this section we show an upper bound for maximum load attained by the balanced allocation
on regular dynamic graphs (i.e., Theorem 6). Suppose that the balanced allocation process has
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allocated n balls to the dynamic regular graph (G(1), . . . , G(n)). Define the conflict graph Cn formed
by the edges selected by the n balls. The vertex set of Cn is the set [n] of bins, and the loads of
these bins are updated during the process.

Given a tree T which is a subgraph of Cn, and vertices u, v of the tree, if {u, v} is an edge of
Cn then we say it is a cycle-producing edge with respect to the tree T . The name arises as adding
this edge to the tree would produce a cycle, which may be a 2-cycle if the edge {u, v} is already
present in T . For a positive integer c > 0, a subgraph of Cn is called c-loaded if each vertex (bin)
contained in the subgraph has load at least c. The following proposition presents some properties
of connected components of Cn.
Proposition 13. Let (G(1), . . . , G(n)) be a regular dynamic graph on vertex set [n] which is ε-
visible. Let that Cn be the conflict graph obtained after allocating n balls using the balanced allocation
process. Then for every given constant c > 0, with probability at least 1 − n−c, every 12(c + 1)-
loaded connected component of Cn contains strictly fewer than logn vertices. Moreover, the number
of cycle-producing edges in the component is at most 2(c+ 1)/ε.

We will prove the proposition in Appendix F. We now explain how to recursively build a witness
graph, provided there exists a bin whose load is higher than a certain threshold.

Construction of the Witness Graph Let us start with a bin, say r, with ℓ+ c balls. Clearly, if
a ball is in bin r at height h then the other bin it chose, as part of the balanced allocation procedure,
had load at least h. Starting from bin (vertex) r, let us recover all ℓ edges corresponding to the
balls that were placed in r with height at least c. Thus, the alternative bin choices have loads at
least ℓ+ c− 1, . . . , c, respectively. These ℓ bins are all neighbours of r in Cn, and we refer to them
as the children of r. Next, we recover the edges corresponding to balls placed in the children of r at
height at least c. Recursively, we continue until there is no ball remaining at height c or more. For
every i = 1, . . . , ℓ, let f(ℓ−i) denote the number of vertices generated by the recursive construction,
starting with a bin which contains ℓ − i + c balls. Assume for the moment that, for each vertex
with load at least c, the recursive procedure always gives produces distinct children. Then

f(ℓ) > f(ℓ− 1) + f(ℓ− 2) + . . .+ f(0) + 1,

where f(0) = 1. A simple calculation shows that f(ℓ) > 2ℓ. Thus, the recursive procedure gives
a c-loaded tree with at least 2ℓ vertices, under the assumption that the children of each vertex
considered by the recursion are all distinct.

We may now prove our main result on dynamic regular graphs.

Proof of Theorem 6. We want to show that after n balls have been allocated to the dynamic
regular graph (G(1), . . . , G(n)), which satisfies the ε-visibility property, the maximum load is at
most log2 logn+O(1/ε) with high probability.

Let c > 0 be a given constant. By the second statement of Proposition 13, with probability
at least 1 − n−c, the number of cycle-producing edges in a given component of Cn is at most
c2 = 2(c + 1)/ε. For a contradiction, suppose that there exists a bin, say r, which has at least
ℓ + c1 + c2 + 1 balls, where c1 = 12(c + 1). Consider c2 + 1 balls in r at height at least ℓ + c1.
The children of r in Cn are the bins r1, r2, . . . , rc2+1 (which might not be distinct), which were
the alternative choice of these c2 + 1 balls. Each of these children ri has load at least ℓ + c1.
We start the recursive construction at each child ri of r. Assuming that this component of Cn
contains at most c2 cycle-producing edges, it follows that for at least one child ri of r, the recursive
procedure gives distinct children for each vertex which is a descendent of ri. Hence we obtain a
c1-loaded tree which has 2ℓ vertices. Substituting ℓ = log2 logn and applying the first statement of
Proposition 13, we conclude that with probability at least 1 − n−c such a structure does not exist
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in Cn. This contradiction shows that with high probability, the maximum load after n balls have
been allocated is at most log2 logn+O(1/ε).
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A Proof of Theorem 4

Proof. Let G = ([n], E) denote a s-regular graph that does not contain any 4-cycle, where s = nε. It
is worth mentioning that there are several explicit families of s-regular graphs with girth logs n (e.g.,
see [10]). For each i ∈ [n], let N(i) be set of vertices adjacent to i. Also, let H = ([n], {N(i), i =
1, . . . , n}) denote a hypergraph obtained from G. We consider the s-uniform dynamic hypergraph
(H,H, . . . ,H). Clearly, for every {i, j} ⊂ [n] we have that

vis(i, j) 6 n 6 sn1−ε

Therefore, the dynamic hypergraph is ε-visible. Fix an integer d such that 2 6 d 6 s and d is
constant. Since G does not contain any 4-cycle, we deduce that every d-subset of vertices only
appears in at most one hyperedge of H. Therefore, the probability that a d-subset is chosen by any
ball is 1/(n

(

s
d

)

). Let D = {i1, i2, . . . , id} ⊂ [n] be an arbitrary set of d vertices contained in some
hyperedge of H. Let X(D, k) be an indicator random variable taking one if at least k balls choose
D and zero otherwise. Then we have that

Pr [X(D, k) = 1] =

(

n

k

)

(

1

n
(

s
d

)

)k

Also let Yk =
∑

D X(D, k) denote the number of d-subsets that are chosen by at least k balls. By
linearity of expectation we have that

E [Yk] =
∑

D

E [X(D, k)] = n

(

s

d

)(

n

k

)

(

1

n
(

s
d

)

)k

> n

(

s−d

k

)k

= n

(

n−dε

k

)k

, (2)

where the last inequality follows from
(

n
k

)

> (nk )
k and

(

s
d

)

< sd. In what follows we show that with
high probability there exists k such that Yk > 1. Suppose that dε = Θ(1), then if we set k = 1, then
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there is a d-subset which is picked by at least one ball and hence Y1 > 1. If (log logn)/(3 logn) < dε
and dε = o(1), then by setting k = 1/(6dε) we have k < (logn)/(2 log logn) < logn and

E [Yk] > nk−kn−kdε
> n(logn)− logn/(2 log log n)n−1/6 = n1/3 = ω(log n).

Moreover, if dε 6 log logn/(3 logn), then by letting k = logn/(2 log logn) we get that

E [Yk] > nk−kn−kdε
> n(logn)− logn/(2 log log n)n−1/6 = n1/3 = ω(log n).

Therefore, there exists k = min{Ω(1/ε),Ω(logn/ log logn)} so that E [Yk] = ω(logn). As the
number of balls is n, it is easy to observe that for a given k, the random variables X(D, k) are
negatively correlated. Application of the Chernoff bound for negatively correlated random variable
implies that

Pr [Yk 6 E [Yk] /2] 6 exp(−E [Yk]/8) = exp(−ω(logn)).

It follows that there exists a d-subset D which is chosen by at least k balls and hence there is
at least one bin in D whose load is at least k/d.

B Proof of Proposition 8

In this section we prove Proposition 8. First we restate a useful theorem from [8].

Theorem 14. [8, Theorem 3] Let M be an ergodic Markov chain with finite state space Ω and
stationary distribution π. Let T = T (ε) be its ε-mixing time for ε < 1/8. Let (Z1, . . . , Zt) denote
a t-step random walk on M starting from an initial distribution ρ on Ω (that is, Z1 is distributed
according to ρ). For some positive constant µ and every i ∈ [t], let fi : Ω → [0, 1] be a weight function
at step i such that the expected weight Eπ [fi(v)] =

∑

v∈Ω π(v)fi(v) satisfies Eπ [fi(v)] = µ for all i.

Define the total weight of the walk (Z1, ..., Zt) by X =
∑t

i=1 fi(Zi). Write ||ρ||π =
√
∑

x∈Ω ρ2x/πx.
Then there exists some positive constant c (independent of µ and ε) such that for all α > 0,

1. Pr [X > (1 + α)µt] 6 c||ρ||π e−α2µt/72T for 0 6 α 6 1.

2. Pr [X > (1 + α)µt] 6 c||ρ||π e−αµt/72T for α > 1.

3. Pr [X 6 (1 − α)µt] 6 c||ρ||π e−α2µt/72T for 0 6 α 6 1.

Proof of Proposition 8. Let Ω be the vertex set of the R-dimensional torus Γ(n,R) and let a and
b denote two arbitrary agents. By definition of the communication graph process, agents a and b
are initially placed on two randomly chosen vertices of Γ, say u0 and v0. Note that u0 and v0 are
independently chosen according to the stationary distribution π of the random walk on Γ(n,R).
Now consider the trajectory of agents a and b, which give two independent random walks u0, u1, . . .
and v0, v1, . . . on Γ(n,R). Defining Xt = (ut, vt) for t = 0, 1, . . . gives a finite, ergodic Markov chain
with stationary distribution (π, π) on Ω× Ω. For every t > 0, define

f(Xt) = f(ut, vt) =

{

1 if d(ut, vt) 6 r ,

0 otherwise.

where d(·, ·) is the Manhattan distance for the given grid. Let u1
t and v1t denote the projection of

the random walks ut and vt onto the 1-dimensional torus Γ(n1/R, 1), respectively, defined by taking
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the first component of each of the random walks on Γ(n,R). Then X1
t = (u1

t , v
1
t ) is an ergodic

Markov chain on Γ(n1/R, 1), and its initial distribution is stationary. We may also define

f(u1
t , v

1
t ) =

{

1 if d(u1
t , v

1
t ) 6 r ,

0 otherwise.

By the Manhattan distance property, if f(ut, vt) = 1 then f(u1
t , v

1
t ) = 1. Therefore,

vis(a, b) =

n
∑

t=0

f(Xt) 6

n
∑

t=0

f(X1
t ).

Set δ = min{1/4, 1/R}. Let t0 be the first time when d(u1
t0 , v

1
t0) 6 nδ. Consider a moving window

W of length 2nδ+1, which contains the locations of u1
t0 and v1t0 . At time t0, the vertices covered by

W are labelled in increasing order, with the leftmost vertex labelled −nδ and the rightmost vertex
labelled nδ − 1. The window W stays at its initial location as long as no agent hits a border of W
(vertices labelled −nδ or nδ), or the middle vertex of W (labelled 0). Let b be the first agent that
hits a border or the centre of W . From this time on, b and W are coupled so that they both move
and/or stay, simultaneously. (If b moves left then W also moves left, for example.) Each time the
window W moves, a vertex u ∈ Γ1 is no longer covered by W and a new vertex, w ∈ Γ1, becomes
covered by w. The new vertex w is assigned the label of vertex u. This process always labels the
vertices covered by W by {−nδ−1, . . . , nδ − 1}, and the movement of agent b over these labeled
vertices simulates a random walk on the additive group Z2nδ+1. Define

S = {1 6 t 6 n | u1
t and v1t ∈ W}.

Assume that S 6= ∅ and define the chain Yt = (u1
t , v

1
t ), t ∈ S. Then Yt can be considered as

an ergodic Markov chain of length |S| 6 n over Z2nδ−1, or equivalently, as a Markov chain on a
(2nδ + 1)-cycle. By the proposition assumption we have r = O(no(1)) < nδ, and so

vis(a, b) =

n
∑

t=0

f(Xt) 6

n
∑

t=0

f(X1
t ) 6

∑

t∈S

f(Yt) 6

n
∑

t=0

f(Yt).

The chain Yt converges to stationary distribution (π, π), where π is the uniform distribution of a
random walk on a (2nδ + 1)-cycle. It follows that for all t = 0, 1, . . . we have E(π,π) [f(Yt)] = µ =

Θ(r/nδ), independently of t. It is well-known [15] that the ε-mixing time of the random walk on a
(2nδ+1)-cycle is O(n2δ log(1/ε)). If ρ is the initial distribution Y0, then we have that ||ρ||π 6 O(nδ).
Applying Theorem 14 implies that

Pr

[

n
∑

t=1

f(Yt) > µ · n
]

= O(nδ)e−Θ(rn1−3δ) = n−ω(1).

Therefore, with probability 1− n−ω(1),

vis(a, b) 6

n
∑

t=0

f(Yt) = O(rn1−δ) = O(n1−δ+o(1)) = O(n1−ε),

taking ε = δ/2, say. Taking the union bound over all pairs of agents completes the proof.
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C Appearance Probability of a Certain Structure

In this subsection we work towards a proof of Lemma 12. First we will give some useful definition
and prove some helpful results. The definition was introduced in [19].

Definition 15. Suppose that A is an allocation algorithm that sequentially allocates n balls into
n bins according to some mechanism. For a given constant α > 0, and for Θ(n) = m 6 n, we say
that A is (α,m)-uniform if for every ball 1 6 t 6 m = Θ(n) and every bin i ∈ [n],

Pr [ ball t is allocated to bin i by A | balls 1, 2, . . . , t− 1 have been allocated by A ] 6
α

n
.

In the above definition, we condition on the allocations of balls 1, . . . , t−1 into bins made by A.
The following result, proved in Appendix E, states that the balanced allocation process is uniform

on dynamic hypergraphs.

Lemma 16 (Uniformity Lemma). Fix d = d(n) with 2 6 d = o(log n) and suppose that for some
constant β > 1, the s-uniform dynamic hypergraph (H(1), . . . ,H(n)) satisfies the β-balanced and
size properties, with d 6 s. Then there exists a constant α = α(β), which depends only on β, and
there exists m = Θ(n) with m < n, such that the balanced allocation process on (H(1), . . . ,H(n)) is
(α,m)-uniform. Specifically, we may take α = 44β.

We are ready to prove Lemma 12.

Lemma 17 (Restatement of Lemma 12). Fix d = d(n) with 2 6 d = o(logn). Let (H(1), . . . ,H(n))
be a dynamic hypergraph which satisfies the β-balanced, ε-visibility and c0-size properties. Suppose
that c > 44βe2 is a sufficiently large constant, and let k = C logn for some constant C > 1. There
exists Θ(n) 6 m 6 n such that the probability that Cm contains a c-loaded k-vertex tree is at most

exp
{

4k log(2βd)− c(d− 1)(k − r − 1) +
(

c0 + 3− rε/2
)

log(n)
}

where r is the number of red vertices in the blue-red coloring of the tree. Moreover, with high
probability, if Cm contains any such tree then r = O(1/ε).

Proof. Fix m = m(n) to equal the m provided by Lemma 16. There are at most 4k ordered trees
with k vertices. (Proposition 10). Fix such a tree, say T , and label the vertices {1, 2, . . . , k} such
that vertex i is the i-th new vertex visited when performing depth-first search in T starting from
the root, and respecting the given ordering. In particular, the root of T is vertex 1. Next, we will
assign a d-choice to the root vertex of T , as a first step in describing trees which may be present
in the witness graph Cm. Let x count the number of possible d-choices that can be assigned to the
root of T . Then

x 6

(

s

d

)

·
∣

∣

∣

∣

∣

m
⋃

t=1

Et
∣

∣

∣

∣

∣

·m 6

(

s

d

)

· nc0+2,

where the last inequality follows from the size property and the inequality m 6 n. Therefore,
there are x possibilities for the root and hence there are at most 4k ·

(

s
d

)

· nc0+2 ordered trees with
the specified root. Fix an arbitrary d-choice Dt as the root for T .

Next we fix an arbitrary function col : {2, . . . , k} → {blue, red}, that gives a blue-red coloring
of 2, . . . , k. In what follows we establish an upper bound for the probability that Cm contains the
blue-red colored tree T ⊂ Cm, (according to Definition 11). Let q1(t) be the probability that the
t-th ball chooses the root of T (that is, that the d-choice made by the t-th ball corresponds to the
root of T ). Then

m
∑

t=1

q1(t) 6

m
∑

t=1

1
(

s
d

) 6
n
(

s
d

) , (3)
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because H contains
(

s
d

)

distinct d-element sets for for every H ∈ Et. For every t = 2, . . . , k, define
qi(t, col(i)) to be the probability that the t-th ball chooses the i-th vertex of the tree (i.e., i) with
col(i). If col(i) is red then Dt must share at least two bins with ∪i−1

j=1Dtj , while if col(i) is blue then
Dt only shares one bin with its parent. For every i = 2, . . . , k, let us derive an upper bound on
qi(t, blue). Here, the i-th vertex share one bin with its parent in T , say Dtj . Now Dtj has d bins
and by the balancedness property we get

Pr
[

Dtj ∩Ht 6= ∅
]

6
∑

i∈Dtj

Pr [i ∈ Ht] 6
βds

n
,

where Ht is the edge chosen by ball t from H(t), uniformly at random. Suppose that for some a > 1
we have |Dtj ∩ Ht| = a 6 d. Then the total number of d-element subsets of Ht which share only

one bin with Dtj is a
(

s−a
d−1

)

6 d
(

s−1
d−1

)

. Thus, we get

m
∑

t=1

qi(t, blue) 6

m
∑

t=1

βds

n
· d
(

s−1
d−1

)

(

s
d

) =

m
∑

t=1

βd3

n
6 βd3, (4)

because m 6 n.
Next, for every i = 2, . . . , k, and every t = 2, . . . ,m, we need an upper bound on qi(t, red). If

the i-th vertex of the tree is the set Dt and is coloured red, then Dt is a d-element set of bins which
shares at least two bins with ∪i−1

j=1Dtj . One of these bins belongs to the (known) parent, and the
other belongs to Dt1 . . . , Dti−1

. So if U is the number of choices for this pair of bins, then

U 6 d · (i− 1)d 6 kd2. (5)

Let {p1, p2 . . . , pU} be the set of such pairs of bins. For J = 1, . . . , U , write A(pJ , t) for the event
that the pair pJ is contained in a randomly chosen edge of Et. Observe that if pJ ⊂ Dt then A(pJ , t)
holds. Then, by the balancedness property we have

Pr [pJ ⊂ Dt]

= Pr [pJ ⊂ Dt | A(pJ , t)] ·Pr [A(pJ , t)]

6 Pr [pJ ⊂ Ht] ·
(

s−2
d−2

)

(

s
d

) ·Pr [A(pJ , t)]

6 Pr [pJ ∩Ht 6= ∅] ·
(

s−2
d−2

)

(

s
d

) ·Pr [A(pJ , t)]

6
2βs

n
·
(

s−2
d−2

)

(

s
d

) ·Pr [A(pJ , t)] =
2βd(d− 1)

(s− 1)n
Pr [A(pJ , t)] ,

as
(

s−2
d−2

)

is the number of d-element subsets of Ht which contain the pair pJ . Then

qi(t, red) 6

U
∑

J=1

2βd(d− 1)

(s− 1)n
Pr [A(pJ , t)] .

Note that by (5) we have U 6 kd2 and hence,

m
∑

t=1

qi(t, red) 6

U
∑

J=1

n
∑

t=1

2βd(d− 1)

(s− 1)n
Pr [A(pJ , t)] 6

U
∑

J=1

2βd(d− 1)

(s− 1)n
vis(pJ) 6

2βkd4

nε
. (6)
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The final inequality follows from the visibility property, using the fact that d < s.
Write col−1(blue) for the set of blue vertices in T , and similarly for col−1(red). Then

|col−1(red)|+ |col−1(blue)| = k − 1.

Suppose that (t1, . . . , tk) is the sequence of balls that are going to select vertices 1, 2, . . . , k of T . By
applying (3), (4) and (6), we find that the probability that the edges of the colored tree T appears
in Cm at times (t1, . . . , tk), and the corresponding sets Dt1 , . . . , Dtk consistent with chosen blue-red
coloring scheme, is at most

∑

(t1,...,tk)

{

q1(t1)

k
∏

i=2

qi(ti, col(i))

}

6

(

m
∑

t=1

q1(t)

)

k
∏

2=1

(

m
∑

t=1

qi(t, col(i))

)

6
n
(

s
d

)





∏

i∈col−1(blue)

m
∑

t=1

qi(t, blue)









∏

i∈col−1(red)

m
∑

t=1

qi(t, red)





6
n
(

s
d

)

(

βd3
)|col−1(blue)|

(

2βkd4

nε

)|col−1(red)|

6
nβkd4k
(

s
d

)

(

2k

nε

)|col−1(red)|

. (7)

There are at most 2k−1 coloring functions and 4kpoly(n)
(

s
d

)

rooted and ordered trees. So by the
upper bound (7), together with the union bound over all colored ordered trees, we obtain

Pr [ Cm contains a valid blue-red colored k-vertex tree with r red vertices ]

6 4k2k−1 · nc0+2

(

s

d

)

· nβkd4k
(

s
d

)

(

2k

nε

)r

6 nc0+3 · (2βd)4k · n−rε/2
6 exp

(

4k log(2βd) + (c0 + 3− rε/2) logn
)

, (8)

using k = O(log n) for the penultimate inequality.
Let b = k − r − 1 be the number of blue vertices and let Ds1 , . . . , Dsb be the sorted list of

blue vertices such that s1 < s2 < · · · < sb. Then, by the definition of blue-red coloring, for every
j = 1, . . . , b we have |(∪j−1

g=1Dsg ) ∩Dsj | 6 1. This implies that

y = | ∪k
j=1 Dtj | > | ∪b

j=1 Dsj | > (d− 1)b = (d− 1)(k − 1− r),

since {s1, . . . , sb} ⊆ {t1, . . . , tk}. Applying Lemma 16 implies that the balanced allocation is (α,m)-
uniform, where α = 44β, say. Hence for any c > 44βe2, the probability that each bin in ∪k

j=1Dtj is
allocated at least c balls (that is, the tree T is c-loaded) is at most

(

m

cy

)

(αy

n

)cy

6

(

em

cy

)cy
(αy

n

)cy

6

(eα

c

)cy

6 e−c(d−1)(k−r−1),

where the last inequality follows from m 6 n and the fact that c > αe2. Since balls are independent
from each other, we can multiply the above inequality by (8) to show that the probability that Cm
contains a c-loaded k-vertex tree with r red vertices is at most

exp
{

4k log(2βd)− c(d− 1)(k − r − 1) +
(

c0 + 3− rε/2
)

logn
}

, (9)

proving the first statement of the lemma. Finally, suppose that rε → ∞ as n → ∞. Then the
upper bound in (9) can be written as

exp
{

(

4 log(2βd)− c(d− 1)
)

k +O(log n) + o(r · logn)− (rε/2) logn
}

6 exp
{

O(log n) + o(r · logn)− (rε/2) logn
}

.
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Since rε → ∞, this term dominates and the probability that Cm contains a blue-red coloured tree
with r red vertices tends to zero. Therefore, if such a tree is present in Cm then r = O(1/ε) with
high probability. This completes the proof.

D Missing Part of Proof of Theorem 2

In order to prove the second statement of Theorem 2 we show the sub-additivity of the balanced
allocation algorithm. We want to prove that for every constant integer γ > 1 with γm 6 n, after
allocating γm balls, the maximum load is at most γ(logd logn+O(1/ε)), with high probability. First
assume that 2m 6 n and suppose that the algorithm has allocated m balls to H(t), t = 1, . . . ,m and
let ℓ∗ 6 logd logn + O(1) denote its maximum load. We now consider two independent balanced
allocation algorithms, say A and A0, on two dynamic hypergraphs starting from step m. These

dynamic hypergraphs are (H(m), . . . ,H(n)) and (H(m)
0 , . . . ,H(n)

0 ), where H(t)
0 is an identical copy

of H(t) for t = m, . . . , n. Moreover, we assume that in round m, all bins contained in H(m)
0 have

exactly ℓ∗ balls. Let us couple algorithm A on H(t) and algorithm A0 on H(t)
0 . Write V = [n]

for the set of n bins. To do so, the coupled process allocates a pair of balls to bins as follows:
for t = m + 1, . . . , 2m, the coupling chooses a one-to-one labeling function σt : V → {1, 2, . . . , n}
uniformly at random, where V is the ground set of both hypergraphs (i.e, set of n bins) and
{1, 2, . . . , n} is a set of labels. Next, the coupling chooses Dt randomly from H(t). Let D′

t denote

the same set of d bins as Dt in H(t)
0 . Algorithm A allocates ball t+1 to a least-loaded vertex of Dt,

and algorithm A0 allocates ball t+1 to a least-loaded vertex of D′
t, with both algorithms breaking

ties in favour of the vertex v with the smallest load and minimum label σt(v). Note that algorithm
A is a faithful copy of the balanced allocation process on (H(m), . . . ,H(n)), and algorithm A0 is a

faithful copy of the balanced allocation process on (H(m)
0 , . . . ,H(n)

0 ), respectively. (This follows as
σt is chosen uniformly at random.) Let Xt

i and Y t
i , m + 1 6 t 6 2m, denote the load of bin i in

H(t) and H(t)
0 , respectively. We prove by induction that for every integer m 6 t 6 2m and i ∈ V

we have

Xt
i 6 Y t

i . (10)

The inequality holds when by the assumption that Y m
i = ℓ∗ for every i ∈ V . Let us assume that

for every t′, t′ 6 t 6 2m, Inequality (10) holds, then we will show it for t + 1. Let i ∈ Dt+1 and
j ∈ D′

t+1 denote the vertices (bins) that receive a ball in step t+ 1. We now consider two cases:

• Case 1: Xt
i < Y t

i . Since algorithm A allocated ball t+ 1 to bin i, it follows that

Xt
i + 1 = Xt+1

i 6 Y t
i 6 Y t+1

i .

So, Inequality (10) holds for t+ 1 and every bin i ∈ V .

• Case 2: Xt
i = Y t

i . Since D′
t+1 is a copy of Dt+1, we have j ∈ Dt+1 and i ∈ D′

t+1. We know
that no vertex (bin) in Dt+1 has smaller load than i, and no vertex (bin) in D′

t+1 has smaller
load than j. Hence

Xt
i 6 Xt

j 6 Y t
j 6 Y t

i ,

where the middle inequality follows from the inductive hypothesis (10) for bin j. So by
assumption of this case we obtain Xt

i = Xt
j = Y t

j = Y t
i . If i 6= j and σt+1(j) < σt+1(i),

then it contradicts the fact that ball t + 1 is allocated to bin i by algorithm A. Similarly,
if σt+1(j) > σt+1(i), then it contradicts the fact that algorithm A0 allocated ball t to bin j.
Therefore i = j and hence

Xt+1
i = Xt

i + 1 = Y t
i + 1 = Y t+1

i .
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Thus, in both cases, Inequality (10) holds for every t > 0. By applying the first part of the
theorem, with high probability, using algorithm A0 to allocate m balls to the dynamic hypergraph

(H(m)
0 , . . . ,H(2m)

0 ) results in maximum load

ℓ∗ + logd logn+O(1/ε) 6 2(logd logn+O(1/ε))

in H(2m)
0 . Therefore, by Inequality (10), after using algorithm A to allocate m balls to the dy-

namic hypergraph (H(m), . . . , H(n)), with high probability the maximum load in H(2m) is at most
2(logd logn+O(1/ε)). Applying the union bound, we conclude that after allocating γm balls, where
γm 6 n, the maximum load is at most γ(logd log n+O(1/ε)), with high probability.

E Proof of Lemma 16

Berenbrink et al. [3] proposed an allocation algorithm B such that for t = 1, 2, . . ., the t-th ball
chooses an edge ofH(t) = ([n], Et), t = 1, . . ., uniformly at random, sayHt. The ball is then allocated
to an empty vertex (bin) of Ht, with ties broken randomly. If Ht does not contain an empty bin
then the process fails. The next lemma follows directly from [3, Lemmas 4, 5].

Lemma 18. Suppose that the dynamic s-uniform hypergraph (H(1), . . . ,H(n)) satisfies the balanced-
ness and size properties. There exists m = Θ(n) such that with probability at least 1−n−2, algorithm
B successfully allocates m balls and there are at least s/2 empty vertices in Ht for t = 1, . . . ,m.

We now apply the above result to show the same property holds for the balanced allocation on
any dynamic hypergraph.

Lemma 19. Fix d = d(n) with 2 6 d = o(log n). Suppose that the dynamic s-uniform hypergraph
(H(1), . . . ,H(n)) satisfies the balancedness and size properties. There exists m = Θ(n) with m < n
such that with probability at least 1− n−2, the edge Ht chosen by the t-th ball contains at least s/2
empty vertices for t = 1, . . . ,m.

Proof. We apply a coupling technique between the balanced allocation process on a dynamic hy-
pergraph and B.

Let us first consider an identical copy of the set of bins, called B. The coupled process sequen-
tially allocates a ball to a pair of bins. In round t = 1, . . . ,m, the t-th ball chooses an edge of H(t)

uniformly at random, say Ht. Let H ′
t be the corresponding set of bins, chosen from B. Then the

first ball is allocated to a bin, say i, contained in Ht according the balanced allocation. If i ∈ H ′
t

is empty then the second ball is allocated to bin i ∈ H ′
t as well. If i ∈ H ′

t is not empty then the
second ball is allocated to an empty bin from H ′

t, with ties are broken randomly. If there is no
empty bin in H ′

t then the coupling fails. Note that Ht and H ′
t have the same set of bins but may

have different loads. Observe that the coupled process allocates balls to bins from B according to
B. Next we show that for t = 1, . . . ,m,

Empty(Ht) > Empty(H ′
t), (11)

where Empty(H) denotes the number of empty bins contained in H . For a contradiction, assume
that there is a first time t1 such that Empty(H ′

t1) > Empty(Ht1). Then there is vertex i ∈ H ′
t1

which is empty, while i ∈ Ht1 has a ball at height zero: this is ball t0, say, where 1 6 t0 6 t1. This
implies that the coupled process has allocated ball t0 to bin i ∈ Ht1 , but it has not allocated any
ball to bin i ∈ H ′

t1 , since i was empty until round t1. This contradicts the definition of the coupled
process. So Inequality (11) holds for t = 1, . . . ,m. Applying Lemma 18 yields that there exists
m = Θ(n) such that for t = 1, . . . ,m,

Empty(Ht) > Empty(H ′
t) > s/2.
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Proof of Lemma 16. Fix m = m(n) to equal the m provided by Lemma 19. For t = 1, . . . ,m, let Dt

be the d-element subset of Ht that is chosen by the t-th ball. Define the indicator random variable
It as follows:

It :=

{

1 if Dt contains at least d/6 empty vertices,

0 otherwise.

Let us fix an arbitrary bin i and then define A(t, i) to be the event that the t-th ball is allocated to
vertex i. (The first t− 1 balls have already been allocated, as the balanced allocation process never
fails.) Observe that if i 6∈ Dt then Pr [A(t, i)] = 0. It follows that

Pr [A(t, i)] = Pr [A(t, i) | i ∈ Dt and It = 1] ·Pr [i ∈ Dt and It = 1]

+Pr [A(t, i) | i ∈ Dt and It = 0] ·Pr [i ∈ Dt and It = 0] .

Now there are at least d/6 empty vertices on Dt when It = 1, so

Pr [A(t, i) | i ∈ Dt and It = 1] 6 6/d.

It follows that

Pr [A(t, i)] 6 (6/d) Pr [i ∈ Dt and It = 1] +Pr [i ∈ Dt and It = 0]

6 (6/d) Pr [i ∈ Dt] +Pr [It = 0 | i ∈ Dt] ·Pr [i ∈ Dt] . (12)

In order to have i ∈ Dt, first an edge containing i must be selected, and then the chosen d-element
subset of that edge must contain i. By the β-balancedness property,

Pr [i ∈ Dt] 6
βs

n
·
(

s−1
d−1

)

(

s
d

) 6
β

n
.

Using the above inequality, we simplify Inequality (12) as follows:

Pr [A(t, i)] 6
6β

n
+

βd

n
Pr [It = 0 | i ∈ Dt] .

If d 6 6 then the above inequality immediately implies that Pr [A(t, i)] 6 12β/n. This completes
the proof when d 6 6. For the remainder of the proof we assume that d > 7, and prove that

Pr [It = 0 | i ∈ Dt] 6 ĉ/d (13)

for some absolute constant ĉ > 0. From this, we see that Pr [A(t, i)] 6 α/n where α = β(6+ ĉ). As
i was an arbitrary bin, this proves that the process is (α,m)-uniform.

Let F be the event that Ht contains at least s/2 empty vertices for all t = 1, . . . ,m. By
Lemma 19, we have Pr [F ] > 1− n−2. Then

Pr [It = 0 | i ∈ Dt]

= Pr [It = 0 | (i ∈ Dt) and F ] ·Pr [F ] +Pr [It = 0 | (i ∈ Dt) and ¬F ] ·Pr [¬F ]

6 Pr [It = 0 | (i ∈ Dt) and F ] + n−2
6 Pr [It = 0 | (i ∈ Dt) and F ] + 1/d. (14)

Let X be the random variable that counts the number of empty bins of a random (d− 1)-element
subset ofHt\{i}, conditioned on the event that “(i ∈ Dt) and F” holds. ThenX is a hypergeometric
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random variable with parameters (s− 1,K, d− 1), where K is the number of empty bins contained
in Ht \ {i}. Thus

E [X ] =
(d− 1)K

s− 1
and Var [X ] 6

(d− 1)K

s− 1
6 d.

Then E [X ] > d/3, since K > s/2 − 1 when i ∈ Dt and F holds (and using the size property
s = Ω(logn)) and the fact that d > 7). Therefore

Pr [It = 0 | (i ∈ Dt) and F ]

6 Pr [X < d/6] 6 Pr [|X −E [X ] | 6 E [X ] /2] <
4Var [X ]

E [X ]
2 6

36d

d2
=

36

d
,

using Chebychev’s inequality. Substituting the above upper bound in Inequality (14) establishes
(13) with ĉ = 38, which completes the proof.

F Proof of Proposition 13

In this subsection we will prove two lemmas and then combine them to establish the proposition.
The lemmas and their proofs are inspired by [13, Lemma 2.1 and 2.2]. Recall that a subgraph of
Cn is c-loaded if every vertex (bin) in the subgraph has load at least c.

Lemma 20. Let k be a positive integer and let c1 > 0. The probability that conflict graph Cn
contains a c1-loaded connected component with k vertices is at most

n · 8k ·
(

2e

c1

)c1k

.

Moreover, by setting c1 = 12(c+ 1), we conclude that with probability at least 1− n−c, the conflict
graph Cn does not contain a c1-loaded tree with at least logn vertices.

Proof. A connected component in Cn with k vertices contains a spanning tree with k vertices. By
Proposition 10, there are at most 4k−1 ordered trees with k vertices. For every ordered tree, we can
choose its root in n ways, as we have n bins (vertices). Hence there are at most n · 4k−1 rooted and
ordered trees. Let us fix an arbitrary ordered tree T with a specified root. Also let (t1, . . . , tk−1)
denote an arbitrary sequence of rounds, where ti ∈ {1, . . . , n} is the round when the i-th edge of the
ordered tree T is chosen. Notice that in an ordered tree with specified root, the i-th edge always
connects the i-th child to its parent, and the parent is already known to us. Therefore, to build the
tree, the i-th edge of the tree must be chosen from edges of G(ti) that are adjacent to the known
parent. This implies that the algorithm chooses the i-th edge of T in round ti with probability

∆ti

n∆ti
/2 = 2

n . Since balls are independent from each other, the tree T is constructed at the given

times (t1, . . . , tk−1) with probability

(

2

n

)k−1

. (15)

On the other hand, ball t is allocated to a given bin with probability at most ∆t/(n∆t/2) = 2/n.
Therefore, the probability that T is c1-loaded is at most

(

n

ck

)(

2k

n

)c1k

6

(

en

c1k

)c1k (2k

n

)c1k

=

(

2e

c1

)c1k

, (16)
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where we used the fact that
(

n
c1k

)

6

(

en
c1k

)c1k

. Since balls are independent, one can multiply (15)

by (16) and derive an upper bound for the probability that T is constructed at the given times and
is c-loaded. Taking the union bound over all rooted ordered trees and time sequences gives

n4k−1
∑

(t1,...,tk−1)

{

(

2

n

)k−1(
2e

c1

)c1k
}

6 n4k−1nk−1 ·
{

(

2

n

)k−1 (
2e

c1

)c1k
}

= n8k−1

(

2e

c1

)c1k

,

proving the first statement of the lemma. By setting c1 = 12(c + 1) and k = logn in the above
formula, we infer that the probability that Cn contains a c1-loaded tree with logn vertices is at
most

n8k−1

(

2e

c1

)c1k

< n23k2−12(c+1)k
6 n2−ck−9k

6 n−c,

completing the proof.

Lemma 21. Suppose that the conflict graph Cn contains a c-loaded k-vertex tree T , where c > 4e is
any constant and k is a positive integer. Let p denotes the number of cycle-producing edges (with
respect to T ) which have been added between vertices in this tree during the allocation process. Then
p < 2(c+ 1)/ε with probability at least 1− n−c.

Proof. For a given connected component of k vertices, there are at most
(

k
2

)

edges whose addition
may produce a cycle. This includes edges already present in the component, as an edge with
multiplicity 2 (double edge) forms a 2-cycle. Thus, the p edges can be chosen in

(

k
2

)p
< k2p ways.

Let {e1, e2, . . . , ep} denote a set of p cycle-producing edges (some of these may create 2-cycles).
Also let (t1, . . . , tp) denote a sequence of rounds, where ti ∈ {1, . . . , n} is the round in which the
ti-th ball picks edge ei. For each round t = 1, 2, . . . , n and i = 1, . . . , p, let us define It(ei) as follows:

It(ei) =

{

1 if ei ∈ Et,

0 otherwise.

It is easy to see that

Pr
[

ball t picks edge ei of G
(t)
]

=
It(ei)

|Et|
.

Now vis(ei) =
∑n

t=1 It(ei) for i = 1, . . . , p. Using this, and the fact that |Et| > n/2 for each t
(since G(t) is regular with degree at most 1), the probability that e1, e2, . . . , ep are chosen is at most

∑

(t1,...,tp)

{

p
∏

i=1

Iti(ei)

Eti

}

6

p
∏

i=1

{

n
∑

t=1

It(ei)

Et

}

6

p
∏

i=1

4 vis(ei)

n
6

(

4n1−ε

n

)p

=

(

4

nε

)p

. (17)

Moreover, applying Lemma 20 shows that the probability that Cn contains a c-loaded k-vertex tree
is at most

n · 8k ·
(

2e

c

)ck

6 n · 2−k, (18)

as c > 4e. So, with high probability, Cn does not contain any c-loaded tree with at least (logn)2

vertices. Now assume that k < (logn)2. Combining (17) and (18), and taking the union bound over
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all choices for a set of p edges, we find that the probability that a c-loaded k-vertex tree contains p
cycle-producing edges is at most

k2p ·
(

4

nε

)p

· n · 2−k =

(

4 · k2
nε

)p

· n · 2−k
6 n−εp/2 · n · 2−k, (19)

where the inequality holds as k < (log n)2. Therefore the probability that p = ⌈2(c + 1)/ε⌉ cycle-
producing edges are present is at most n−c. We conclude that p < 2(c + 1)/ε with probability at
least 1− n−c.

Proof of Proposition 13. Combining the Lemmas 20 and 21 establishes the proposition.
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