
Balanced Allocation on Graphs: A Random Walk Approach

Ali Pourmiri Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

pourmiri@ipm.ir

January 11, 2018

Abstract

The standard balls-into-bins model is a process which randomly allocates m balls into n
bins where each ball picks d bins independently and uniformly at random and the ball is then
allocated in a least loaded bin in the set of d choices. When m = n and d = 1, it is well known
that at the end of process the maximum number of balls at any bin, the maximum load, is
(1 + o(1)) logn

log logn
with high probability1. Azer et al. [4] showed that for the d-choice process,

d > 2, provided ties are broken randomly, the maximum load is log logn
log d

+O(1).
In this paper we propose algorithms for allocating n sequential balls into n bins that are

interconnected as a d-regular n-vertex graph G, where d > 3 can be any integer. Let l be
a given positive integer. In each round t, 1 6 t 6 n, ball t picks a node of G uniformly at
random and performs a non-backtracking random walk of length l from the chosen node. Then
it allocates itself on one of the visited nodes with minimum load (ties are broken uniformly at
random). Suppose that G has a sufficiently large girth and d = ω(logn). Then we establish
an upper bound for the maximum number of balls at any bin after allocating n balls by the
algorithm, called maximum load, in terms of l with high probability. We also show that the
upper bound is at most an O(log log n) factor above the lower bound that is proved for the

algorithm. In particular, we show that if we set l = b(logn)
1+ε
2 c, for every constant ε ∈ (0, 1),

and G has girth at least ω(l), then the maximum load attained by the algorithm is bounded
by O(1/ε) with high probability. Finally, we slightly modify the algorithm to have similar
results for balanced allocation on d-regular graph with d ∈ [3,O(logn)] and sufficiently large
girth.

1 Introduction

The standard balls-into-bins model is a process which randomly allocates m balls into n bins
where each ball picks d bins independently and uniformly at random and the ball is then
allocated in a least loaded bin in the set of d choices. When m = n and d = 1, it is well
known that at the end of process the maximum number of balls at any bin, the maximum
load, is (1 + o(1)) logn

log logn
with high probability. Azer et al. [4] showed that for the d-choice

process, d > 2, provided ties are broken randomly, the maximum load is log logn
log d

+O(1). For
a complete survey on the standard balls-into-bins process we refer the reader to [13]. Many
subsequent works consider the settings where the choice of bins are not necessarily independent
and uniform. For instance, Vöcking [15] proposed an algorithm called always-go-left that uses
exponentially smaller number of choices and achieve a maximum load of log logn

dφd
+O(1) whp,

where 1 6 φd 6 2 is an specified constant. In this algorithm, the bins are partitioned into
d groups of size n/d and each ball picks one random bin from each group. The ball is then
allocated in a least loaded bin among the chosen bins and ties are broken asymmetrically.

In many applications selecting any random set of choices is costly. For example, in peer-
to-peer or cloud-based systems balls (jobs, items,...) and bins (servers, processors,...) are
randomly placed in a metric space (e.g., R2) and the balls have to be allocated on bins that
are close to them as it minimizes the access latencies. With regard to such applications, Byer et
al. [7] studied a model, where n bins (servers) are uniformly at random placed on a geometric
space. Then each ball in turn picks d locations in the space and allocates itself on a nearest
neighboring bin with minimum load among other d bins. In this scenario, the probability that
a location close to a server is chosen depends on the distribution of other servers in the space
and hence there is no a uniform distribution over the potential choices. Here, the authors

1With high probability refers to an event that holds with probability 1 − 1/nc, where c is a constant. For
simplicity, we sometimes abbreviate it as whp.

1

ar
X

iv
:1

40
7.

25
75

v4
 [

cs
.D

S]
 2

7
Fe

b
20

16

showed the maximum load is log logn
log d

+ O(1) whp. Later on, Kenthapadi and Panigrahy [11]
proposed a model in which bins are interconnected as a ∆-regular graph and each ball picks
a random edge of the graph. It is then placed at one of its endpoints with smaller load. This

allocation algorithm results in a maximum load of log logn+O
(

logn
log(∆/ log4 n)

)
+O(1). Peres

et al. [14] also considered a similar model where number of balls m can be much larger than
n (i.e., m� n) and the graph is not necessarily regular. Then, they established upper bound
O(logn/σ) for the gap between the maximum and the minimum loaded bin after allocating
m balls, where σ is the edge expansion of the graph. Following the study of balls-into-bins
with correlated choices, Godfrey [10] generalized the model introduced by Kenthapadi and
Panigrahy such that each ball picks an random edge of a hypergraph that has Ω(logn) bins
and satisfies some mild conditions. Then he showed that the maximum load is a constant
whp.

Recently, Bogdan et al. [6] studied a model where each ball picks a random node and
performs a local search from the node to find a node with local minimum load, where it is
finally placed on. They showed that when the graph is a constant degree expander, the local
search guarantees a maximum load of Θ(log logn) whp.

Our Results. In this paper, we study balls-into-bins models, where each ball chooses a
set of related bins. We propose allocation algorithms for allocating n sequential balls into n
bins that are organized as a d-regular n-vertex graph G. Let l be a given positive integer. A
non-backtracking random walk (NBRW) W of length l started from a node is a random walk
in l steps so that in each step the walker picks a neighbor uniformly at random and moves
to that neighbor with an additional property that the walker never traverses an edge twice
in a row. Further information about NBRWs can be found in [1] and [2]. Our allocation
algorithm, denoted by A(G, l), is based on a random sampling of bins from the neighborhood
of a given node in G by a NBRW from the node. The algorithm proceeds as follows: In each
round t, 1 6 t 6 n, ball t picks a node of G uniformly at random and performs a NBRW
W = (u0, u1 . . . , ul), called l-walk. After that the ball allocates itself on one of the visited
nodes with minimum load and ties are broken randomly. Our result concerns bounding the
maximum load attained by A(G, l), denoted by m∗, in terms of l. Note that if the balls are
allowed to take NBRWs of length l = Ω(logn) on a graph with girth at least l, then the visited
nodes by each ball generates a random hyperedge of size l + 1. Then applying the Godfrey’s
result [10] implies a constant maximum load whp. So, for the rest of the paper we focus on
NBRWs of sub-logarithmic length (i.e., l = o(logd n)). We also assume that l = ω(1) and G is
a d-regular n-vertex graph with girth at least ω(l log log n) and d = ω(logn). However, when

l = b(logn)
1+ε
2 c, for any constant ε ∈ (0, 1), G with girth at least ω(l) suffices as well. It is

worth mentioning that there exist several explicit families of n-vertex d-regular graph with
arbitrary degree d > 3 and girth Ω(logd n) (see e.g. [9]).

In order to present the upper bound, we consider two cases:

I. If l > 4γG, where γG =
√

logd n, then we show that whp,

m∗ = O
(

log logn

log(l/γG)

)
.

Thus, for a given G satisfying the girth condition, if we set l = b(logd n)
1+ε
2 c, for any

constant ε ∈ (0, 1), then we have l/γG > (logn)ε/2 and by applying the above upper
bound we have m∗ = O(1/ε) whp.

II. If ω(1) 6 l 6 4 · γG, then we show that whp,

m∗ = O
(

logd n · log log n

l2

)
.

In addition to the upper bound, we prove that whp,

m∗ = Ω

(
logd n

l2

)
(for a proof see Appendix F). If G is a d-regular graph with d ∈ [3,O(logn)], then we slightly
modify allocation algorithm A(G, l) and show the similar results for m∗ in l. The algorithm
A′(G, l) for sparse graphs proceeds as follows: Let us first define parameter

rG = d2 · logd−1 logne.

For each ball t, the ball takes a NBRW of size l · rG, say (u0, u1, · · · , ulrG), and then a subset
of visited nodes, {uj·rG | 0 6 j 6 l}, called potential choices, is selected and finally the ball

2

is allocated on a least-loaded node of potential choices (ties are broken randomly). Provided
G has sufficiently large girth, we show the similar upper and lower bounds as the allocation
algorithm A(G, l) on d-regular graphs with d = ω(logn) (see Appendix E).

Comparison with Related Works. The setting of our work is closely related to [6].
In this paper in each step a ball picks a node of a graph uniformly at random and performs
a local search to find a node with local minimum load and finally allocates itself on it. They
showed that with high probability the local search on expander graphs obtains a maximum load
of Θ(log logn). In comparison to the mentioned result, our new protocol achieves a further
reduction in the maximum load, while still allocating a ball close to its origin. Our result
suggests a trade off between allocation time and maximum load. In fact we show a constant

upper bound for sufficient long walks (i.e., l = (logn)
1+ε
2 , for any constant ε ∈ (0, 1)). Our

work can also be related to the one by Kenthapadi and Panigrahy where each ball picks a
random edge from a nΩ(1/ log logn)-regular graph and places itself on one of the endpoints of
the edge with smaller load. This model results into a maximum load of Θ(log logn). Godfrey
[10] considered balanced allocation on hypergraphs where balls choose a random edge e of a
hypergraph satisfying some conditions, that is, first the size of each edge s is Ω(logn) and
Pr [u ∈ e] = Θ(s

n
) for any bin u. The latter one is called balanced condition. Berenbrink

et al. [5] simplified Godfrey’s proof and slightly weakened the balanced condition but since
both analysis apply a Chernoff bound, it seems unlikely that one can extend the analysis
for hyperedges of size o(logn). Our model can also be viewed as a balanced allocation on
hypergraphs, because every l-walk is a random hyperedge of size l + 1 that also satisfies the
balanced condition (see Lemma A.4). By setting the right parameter for l = o(logn), we show
that the algorithm achieves a constant maximum load with sub-logarithmic number of choices.

In a different context, Alon and Lubetzky [2] showed that if a particle starts a NBRW of
length n on n-vertex graph with high-girth then the number of visits to nodes has a Poisson
distribution. In particular they showed that the maximum visit to a node is at most (1 +
o(1)) · logn

log logn
. Our result can be also seen as an application of the mathematical concept of

NBRWs to task allocation in distributed networks.

Techniques. To derive a lower bound for the maximum load we first show that whp there
is a path of length l which is traversed by at least Ω (logd n/l) balls. Also, each path contains
l+1 choices and hence, by pigeonhole principle there is a node with load at least Ω

(
logd n/l

2
)
,

which is a lower bound for m∗. We establish the upper bound based on witness graph tech-
niques. In our model, the potential choices for each ball are highly correlated, so the technique
for building the witness graph is somewhat different from the one for standard balls-into-bins.
Here we propose a new approach for constructing the witness graph. We also show a key
property of the algorithm, called (α, n1)-uniformity, that is useful for our proof technique. We
say an allocation algorithm is (α, n1)-uniform if the probability that, for every 1 6 t 6 n1, ball
t is placed on an arbitrary node is bounded by α/n, where n1 = Θ(n) and α = O(1). Using
this property we conclude that for a given set of nodes of size Ω(logn), after allocating n1

balls, the average load of nodes in the set is some constant whp. Using witness graph method
we show that if there is a node with load larger than some threshold then there is a collection
of nodes of size Ω(logn) where each of them has load larger than some specified constant.
Putting these together implies that after allocating n1 balls the maximum load, say m∗1, is
bounded as required whp. To derive an upper bound for the maximum load after allocation
n balls, we divide the allocation process into n/n1 phases and show that the maximum load
at the end of each phase increases by at most m∗1 and hence m∗ 6 (n/n1)m∗1 whp.

Discussion and Open Problems. In this paper, we proposed balls-into-bins model,
where each ball picks a set of nodes that are visited by a NBRW of length l and place itself on
a visited node with minimum load. One may ask whether it is possible to replace a NBRW of
length l by several parallel random walks of shorter length (started from the same node) and
get the similar results?

In our result we constantly use the assumption that the graph locally looks like a d-ary
tree. It is also known that cycles in random regular graph are restively far from each other
(e.g, see [8]), so we believe that our approach can be extended for balanced allocation on
random regular graphs.

Many works in this area (see e.g.[6, 11]) assumed that the underlying networks is regular,
it would be interesting to investigate random walk-based algorithms for irregular graphs.

Outline. In Section 2, we present notations and some preliminary results that are required
for the analysis of the algorithm. In Section 3 we show how to construct a witness graph and

3

then in Section 4 by applying the results we the upper bound for the maximum load.

2 Notations, Definitions and Preliminaries

In this section we provide notations, definitions and some preliminary results. A non-backtracking
random walk (NBRW) W of length l started from a node is a simple random walk in l steps so
that in each step the walker picks a neighbor uniformly at random and moves to that neighbor
with an additional property that the walker never traverses an edge twice in a row. Through-
out this paper we assume that l ∈ [ω(1), o(logd n)] is a given parameter and G is a d-regular
graph with girth 10 · l · log logn. Note that we will see that the condition on the girth can be

relaxed to ω(l), for any l higher than (logd n)
1+ε
2 , where ε ∈ (0, 1) is a constant.

It is easy to see that the visited nodes by a non-backtracking walk of length l on G induces
a path of length l, which is called an l-walk. For simplicity, we use W to denote both the
l-walk and the set of visited nodes by the l-walk. Also, we define f(W) to be the number of
balls in a least-loaded node of W . The height of a ball allocated on a node is the number
balls that are placed on the node before the ball.

For every two nodes u, v ∈ V (G), let d(u, v) denote the length of shortest path between u
and v in G. Since G has girth at least ω(l), every path of length at most l is specified by its
endpoints, say u and v. So we denote the path by interval [u, v]. Note that for any graph H,
V (H) denotes the vertex set of H.

Definition 1 (Interference Graph). For every given pair (G, l), the interference graph I(G, l)
is defined as follows: The vertex set of I(G, l) is the set of all l-walks in G and two vertices
W and W ′ of I(G, l) are connected if and only if W ∩W ′ 6= ∅. Note that if pair (G, l) is clear
from the context, then the interference graph is denoted by I.

Now, let us interpret allocation process A(G, l) as follows:
For every ball 1 6 t 6 n, the algorithm picks a vertex of I(G, l), say Wt, uniformly at

random and then allocates ball t on a least-loaded node of Wt (ties are broken randomly). Let
1 6 n1 6 n be a given integer and assume that A(G, l) has allocated balls until the n1-th ball.
We then define Hn1(G, l) to be the induced subgraph of I(G, l) by {Wt : 1 6 t 6 n1} ⊂ V (I).

Definition 2. Let λ and µ be given positive integers. We say rooted tree T ⊂ I(G, l) is a
(λ, µ)-tree if T satisfies:

1) |V (T)| = λ,

2) | ∪W∈V (T) W | > µ.

Note that the latter condition is well-defined because every vertex of T is an (l + 1)-element
subset of V (G). A (λ, µ)-tree T is called c-loaded, if T is contained in Hn1(G, l), for some
1 6 n1 6 n, and every node in ∪W∈V (T)W has load at least c.

2.1 Appearance Probability of a c-Loaded (λ, µ)-Tree

In this subsection we formally define the notion of (α, n1)-uniformity for allocation algorithms,
and then present our key lemma concerning the uniformity of A(G, l). By using this lemma
we establish an upper bound for the probability that a c-loaded (λ, µ)-tree contained in Hn1

exists. The proof of the following lemmas can be found in Appendix A.

Definition 3. Suppose that B be an algorithm that allocates n sequential balls into n bins.
Then we say B is (α, n1)-uniform if, for every 1 6 t 6 n1 and every bin u, after allocating t
balls we have that

Pr [ball t+ 1 is allocated on u] 6
α

n
,

where α is some constant and n1 = Θ(n).

Lemma 2.1 (Key Lemma). A(G, l) is an (α, n1)-uniform allocation algorithm, where n1 = bn/(6eα)c.
In the next lemma, we derive an upper bound for the appearance probability a c-loaded

(λ, µ)-tree, whose proof is inspired by [11, Lemma 2.1].

Lemma 2.2. Let λ, µ and c be positive integers. Then the probability that there exists a
c-loaded (λ, µ)-tree contained in Hn1(G, l) is at most

n · exp(4λ log(l + 1)− cµ).

4

u0 u1 u2 u3 u4

W

WP2

P1 P3 P4P2

Figure 1: The Partition step on W for k = 4 and the Branch step for P2 that gives WP2 , shown by dashed
line.

3 Witness Graph

In this section, we show that if there is a node whose load is larger than a threshold, then
we can construct a c-loaded (λ, µ)-tree contained in Hn1(G, l). Our construction is based on
an iterative application of a 2-step procedure, called Partition-Branch. Before we explain the
construction, we draw the reader’s attention to the following remark:

Remark. The intersection (union) of two arbitrary graphs is a graph whose vertex set and
edge set are the intersection (union) of the vertex and edge sets of those graphs. Let ∩g and
∪g denote the graphical intersection and union. Note that we use ∩ (∪) to denote the set
intersection (union) operation. Moreover, since G has girth ω(l), the graphical intersection of
every two l-walks in G is either empty or a path (of length 6 l). Recall that W denotes both
an l-walk and the set of nodes in the l-walk.

Partition-Branch. Let k > 1 and ρ > 1 be given integers and W be an l-walk with
f(W) > ρ + 1. The Partition-Branch procedure on W with parameters ρ and k, denoted by
PB(ρ, k), proceeds as follows:

Partition: It partitions W into k edge-disjoint subpaths:

Pk(W) = {[ui, ui+1] ⊂W, 0 6 i 6 k − 1},

where d(ui, ui+1) ∈ {bl/kc, dl/ke}.
Branch: For a given Pi = [ui, ui+1] ∈ Pk(W), it finds (if exists) another l-walk WPi

intersecting Pi that satisfies the following conditions:

(C1) ∅ 6= WPi ∩W ⊆ Pi \ {ui, ui+1}.
(C2) f(WPi) > f(W)− ρ.

We say procedure PB(ρ, k) on a given l-walk W is valid, if for every P ∈ Pk(W), WP

exists. We usually refer to W as the father of WP . For a graphical view of the Partition-
Branch procedure see Figure 1.

Definition 4 (Event Nδ). For any given 1 6 δ 6 l, we say that event Nδ holds, if after
allocating at most n balls by A(G, l), every path of length δ is contained in less than 6 logd−1 n/δ
l-walks that are randomly chosen by A(G, l).

For the sake of construction, let us define a set of parameters, depending on d, n, and l,
which are used throughout the paper

k := max{4, bl/
√

logd nc},
δ := bbl/kc/4c,

ρ := d6 logd n/δ
2e.

Lemma 3.1. Suppose that event Nδ holds and W be an l-walk with

f(W) > ρ+ 1.

Then the procedure PB(ρ, k) on W is valid.

For a proof see Appendix B.

5

WP1

R

WP4
free subpaths

WP2
WP3

Figure 2: The first level L1 = {WP1 ,WP2 ,WP3 ,WP4} and the Branch step for free subpaths of Pk(WP1).

3.1 Construction of Witness Graph

In this subsection, we show how to construct a c-loaded (λ, µ)-tree contained in Hn1 . Let
Un1,l,h denote the event that after allocating at most n1 6 n balls by A(G, l) there is a node
with load at least hρ + c + 1, where c = O(1) and h = O(log log n) are positive integers that
will be fixed later. Suppose that event Un1,l,h conditioning on Nδ happens. Then there is an
l-walk R, called root, that corresponds to the ball at height hρ + c and has f(R) > hρ+ c.
Applying Lemma 3.1 shows that PB(ρ, k) on R is valid. So, let us define

L1 := {WP , P ∈ Pk(R)},

which is called the first level and R is the father of all l-walks in L1. (C2) in the Partition-Branch
procedure ensures that for every W ∈ L1,

f(W) > (h− 1)ρ+ c.

Once we have the first level we recursively build the i-th level from the (i− 1)-th level, for
every 2 6 i 6 h. We know that each W except R is created by the Branch step on its father.
Let us fix W ∈ Li−1 and its father W ′. We then apply the Partition step on W and get Pk(W).
We say P ∈ Pk(W) is a free subpath if it does not share any node with W ′. By (C1), we have
that ∅ 6= W ∩W ′ = [u, v] ⊂ P ′, for some P ′ ∈ Pk(W ′) and hence d(u, v) 6 dl/ke. So, [u, v]
shares node(s) with at most 2 subpaths in Pk(W) and thus Pk(W) contains at least k− 2 free
subpaths. Let P0

k(W) ⊂ Pk(W) denote an arbitrary set of free subpaths of size k − 2. By
(C2) and the recursive construction, we have that f(W) > (h− i+1)ρ+ c, for each W ∈ Li−1.
Therefore, by Lemma 3.1, PB(ρ, k) on W is valid. Now we define the i-th level as follows,

Li =
⋃

W∈Li−1

{WP , P ∈ P0
k(W)}.

For a graphical view see Figure 2. The following lemma guarantees that our construction gives
a c-loaded (λ, µ)-tree in Hn1 with desired parameters (for a proof see Appendix C).

Lemma 3.2. Suppose that G has girth at least 10hl and Un1,l,h conditioning on Nδ hap-
pens.Then there exists a c-loaded (λ, µ)-tree T ⊂ Hn1 , where λ = 1 + k

∑h−1
j=0 (k − 2)j and

µ = (l + 1) · k(k − 2)h−1.

4 Balanced Allocation on Dense Graphs

In this section we show the upper bound for the maximum load attained by A(G, l) for d-
regular graph with d = ω(logn). Let us recall the set of parameters for given G and l as
follows,

k := max{4, bl/
√

logd nc},
δ := bbl/kc/4c,

ρ := d8 logd n/δ
2e,

6

and Un1,l,h is the event that at the end of round n1, there is a nodes with load at least hρ+c+1,
where c is a constant and

h :=

⌈
log log n

log(k − 2)

⌉
.

Note that when l = (logn)
1+ε
2 with constant ε ∈ (0, 1), then

k = bl/
√

logd nc > l/
√

log3 n > (logn)ε/3.

Thus, h =
⌈

log logn
log(k−2)

⌉
is a constant. Therefore, in order to apply Lemma 3.2 for this case, it

is sufficient that G has girth at least 10hl or ω(l). Also we have the following useful lemma
whose proof appears in Appendix D.

Lemma 4.1. With probability 1− o(1/n), Nδ holds.

Theorem 4.2. Suppose that G is a d-regular graph with girth at least 10hl and d = ω(logn).
Then, with high probability the maximum load attained by A(G, l), denoted by m∗, is bounded
from above as follows:

I. If ω(1) 6 l 6 4γG, where γG =
√

logd n. Then we have

m∗ = O
(

logd n · log log n

l2

)
.

II. If l > 4γG, then we have

m∗ = O
(

log logn

log(l/γG)

)
.

Note that when l = Θ(γG), we get the maximum load O(log logn).

Proof. By Lemma 2.1 we have that A(G, l) is an (α, n1)-uniform, where n1 = bn/(6eα)c.
Let us divide the allocation process into s phases, where s is the smallest integer satisfying
sn1 > n. We now focus on the maximum load attained by A after allocating n1 balls in the
first phase, which is denoted by m∗1. Let us assume that Un1,l,h happens. Now, in order to
apply Lemma 3.2, we only need that G has girth at least 10hl. By Lemma 3.2, if Un1,l,h

conditioning on Nδ happens, then there is a c-loaded (λ, µ)-tree T contained in Hn1 , where
λ = 1 + k

∑h−1
j=0 (k − 2)j and µ = (l + 1) · k(k − 2)h−1. Thus, we get

Pr [Un1,l,h | Nδ] Pr [Nδ] 6 Pr [T exists | Nδ] Pr [Nδ]
= Pr [T exists and Nδ]
6 Pr [T exists] .

Therefore using the law of total probability and the above inequality we have

Pr [Un1,l,h] = Pr [Un1,l,h | Nδ] Pr [Nδ] + Pr [Un1,l,h | ¬Nδ] Pr [¬Nδ]
6 Pr [T exists] + Pr [¬Nδ]
= Pr [T exists] + o(1/n). (1)

where the last inequality follows from Pr [¬Nδ] = o(1/n) by Lemma 4.1. By definition of h,
we get

λ = 1 + k(1 + (k − 2)h) 6 2k logn

and
µ = (l + 1)k(k − 2)h−1 > (l + 1)(k − 2)h > (l + 1) logn.

It only remains to bound Pr [T exists]. By applying Lemma 2.2 and substituting µ and λ, we
conclude that

Pr [T exists] 6 n exp(4λ log(l + 1))− cµ) 6 n exp{−z logn},

where z = c(l + 1)− 8k log(l + 1). Depending on k we consider two cases: First, k = 4. Then
it is easy to see there exists a constant c such that z > 2. Second, k = bl/γGc. We know that
l < logd n, so we have l 6 γ2

G and hence,

z > cl − 8l log l/γG > l(c− 16 log γG/γG) = l(c− o(1)).

This yields that for some integer c > 0, z = l(c− o(1)) > 2 and hence in both cases we get
Pr [T exists] = o(1/n). Now, by Inequality (1) we infer that m∗1 6 hρ+ c+ 1 with probability
1 − o(1/n). In what follows we show the sub-additivity of the algorithm and concludes that

7

in the second phase the maximum load increases by at most m∗1 whp. Assume that we have a
copy of G, say G′, whose nodes have load exactly m∗1. Let us consider the allocation process
of a pair of balls (n1 + t, t), for every 0 6 t 6 n1, by A(G, l) and A(G′, l). Let Xn1+t

u and Y tu ,
t > 0 denote the load of u ∈ V (G) = V (G′) after allocating balls n1 + t and t by A(G, l) and
A(G′, l), respectively. Now we show that for every integer 0 6 t 6 n1 and u ∈ V (G) we have
that

Xn1+t
u 6 Y tu . (2)

When t = 0, clearly the inequality holds because Y 0
u = m∗1. We couple the both allocation

processes A(G, l) and A(G′, l) for a given pair of balls (n1 + t, t), t > 0, as follows. For
every 1 6 t 6 n1, the coupled process first picks a one-to-one labeling function σt : V (G) →
{1, 2, . . . , n} uniformly at random. (Note that σt is also defined for G′ as V (G) = V (G′).)
Then it applies A(G, l) and selects l-walks Wn1+t and its copy, say W ′t , in G′. After that,
balls n1 + t and t are allocated on least loaded nodes of Wn1+t and W ′t , respectively, and ties
are broken in favor of nodes with minimum label. It is easily checked that the defined process
is a coupling. Let us assume that Inequality (2) holds for every t0 6 t, then we show it for
t + 1. Let v ∈ Wn1+t+1 and v′ ∈ W ′t+1 denote the nodes that are the destinations of pair
(n1 + t+ 1, t+ 1). Now we consider two cases:

1. Xn1+t
v < Y tv . Then allocating ball n1 + t+ 1 on v implies that

Xn1+t
v + 1 = Xn1+t+1

v 6 Y tv 6 Y t+1
v .

So, Inequality (2) holds for t+ 1 and every u ∈ V (G).

2. Xn1+t
v = Y tv . Since Wn1+t+1 = W ′t+1, v ∈ W ′t+1 and v′ ∈ Wn1+t+1. Also we know that

v and v′ are nodes with minimum load contained in Wn+t+1 and Wt+1, So we have,

Xn1+t
v 6 Xn1+t

v′ 6 Y tv′ 6 Y tv .

Since Y tv = Xn1+t
v , we have

Y tv′ = Y tv = Xn1+t
v .

If v 6= v′ and σt+1(v′) < σt+1(v), then it contradicts the fact that ball n1 + t + 1 is
allocated on v. Similarly, if σt+1(v′) > σt+1(v), it contradicts that ball t is allocated on
v′. So, we have v = v′ and

Xn1+t
v + 1 = Xn+t+1

v = Y tv + 1 = Y t+1
v .

So in both cases, Inequality (2) holds for every t > 0. If we set t = n1, then the maximum
load attained by A(G′, l) is at most 2m∗1 whp. Therefore, by Inequality (2), 2m∗1 is an upper
bound for the maximum load attained by A(G, l) in the second phase as well. Similarly, we
apply the union bound and conclude that after allocating the balls in s phases, the maximum
load m∗ is at most sm∗1 with probability 1− o(s/n) = 1− o(1/n).

Acknowledgment. The author wants to thank Thomas Sauerwald for introducing the
problem and several helpful discussions.

References

[1] Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin. Non-backtracking random
walks mix faster. Communications in Contemporary Mathematics, 9:585–603, 2007.

[2] Noga Alon and Eyal Lubetzky. Poisson approximation for non-backtracking random
walks. Israel J. Math., 174(1):227–252, 2009.

[3] Anne Auger and Benjamin Doerr. Theory of Randomized Search Heuristics: Foundations
and Recent Developments. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
2011.

[4] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations. SIAM
J. Comput., 29(1):180–200, 1999.

[5] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into bins
with related random choices. J. Parallel Distrib. Comput., 72(2):246–253, 2012.

[6] Paul Bogdan, Thomas Sauerwald, Alexandre Stauffer, and He Sun. Balls into bins via
local search. In Proc. 24th Symp. Discrete Algorithms (SODA), pages 16–34, 2013.

8

[7] John W. Byers, Jeffrey Considine, and Michael Mitzenmacher. Geometric generaliza-
tions of the power of two choices. In Proc. 16th Symp. Parallelism in Algorithms and
Architectures (SPAA), pages 54–63, 2004.

[8] Colin Cooper, Alan M. Frieze, and Tomasz Radzik. Multiple random walks in random
regular graphs. SIAM J. Discrete Math., 23(4):1738–1761, 2009.

[9] Xavier Dahan. Regular graphs of large girth and arbitrary degree. Combinatorica,
34(4):407–426, 2014.

[10] Brighten Godfrey. Balls and bins with structure: balanced allocations on hypergraphs.
In Proc. 19th Symp. Discrete Algorithms (SODA), pages 511–517, 2008.

[11] Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on graphs. In Proc.
17th Symp. Discrete Algorithms (SODA), pages 434–443, 2006.

[12] Donald Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Adison-Wesley, third edition, 1997.

[13] Micheal Mitzenmacher, Andréa W. Richa, and Ramesh Sitaraman. The power of two ran-
dom choices: A survey of technique and results. In Handbook of Randomized Computation
Volume 1, pages 255–312, 2001.

[14] Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the
(1 + β)-choice process. Random Struct. Algorithms, DOI: 10.1002/rsa.20558, 2014.

[15] Berthold Vöcking. How asymmetry helps load balancing. J. ACM, 50(4):568–589, 2003.

A Omitted Proofs of Section 2

In this section we show some useful results about interference graph I(G, l) and present the
omitted proofs of Section 2.

Lemma A.1. Suppose that V (I) and ∆(I) denote the vertex set and the maximum degree of
interference graph I(G, l), respectively. Then we have,

(i) |V (I)| = nd(d− 1)l−1/2,

(ii) ∆(I) 6 (l + 1)2d(d− 1)l−1.

Furthermore, the number of rooted λ-vertex trees contained in I is bounded by 4λ · |V (I)| ·
∆(I)λ−1.

Proof. It is easy to see that in a graph with girth at least ω(l), the number of l-walks is exactly
nd(d−1)l−1/2, (without ordering) which is the size of V (I). Since the graph locally looks like
a d-ary tree, the total number of l-walks including v as j-th visited node is at most

d(d− 1)j−2(d− 1)l−j−1 = d(d− 1)l−1.

Index j varies from 0 to l, so v can be an element of at most (l+ 1)d(d− 1)l−1 l-walks. Also,
every l-walk contains l+1 elements and hence every l-walk intersects at most (l+1)2d(d−1)l−1

other l-walks. Thus we get

∆(I) 6 (l + 1)2 · d(d− 1)l−1.

Let us now bound the total number of rooted λ-vertex trees contained in I. It was shown that
the total number of different shape rooted trees on λ vertices is 4λ (For example see [12]); we
say two rooted trees have different shapes if they are not isomorphic. For any given shape,
there are |V (I)| ways to choose the root. As soon as the root is fixed, each vertex in the first
level can be chosen in at most ∆(I) many ways. By selecting the vertices of the tree level by
level we have that each vertex except the root can be chosen in at most ∆(I) ways. So the
total number of rooted λ-vertex trees in I is bounded by

4λ · |V (I)| ·∆(I)λ−1.

Corollary A.2. The size of family of (λ, µ)-trees is bounded by 4λ|V (I)|∆(I)λ−1.

Proof. We know that every (λ, µ)-tree T is a rooted λ-vertex subtree of I with the additional
property that | ∪W∈V (T) W | > µ. This implies that the size of family of rooted λ-vertex
subtrees of I is an upper bound for the size of family of (λ, µ)-trees and hence by applying
Lemma A.1, we reach the upper bound 4λ|V (I)|∆(I)λ−1.

9

A.1 Proof of the Key Lemma

In this subsection we first present several useful lemmas and then show the key lemma 2.1.
Before that let us define some notations. For every S ⊆ V (G), Emptyt(S) denotes the number
of empty nodes contained in S after allocating t balls. Let N(v) denote the set of neighbors
of v. Note that to avoid a lengthy case analysis we do not optimize the constants.

Lemma A.3 (Deviation bounds for moderate independency). Let X1, · · · , Xn be arbitrary
binary random variables. Let X∗1 , X

∗
2 , · · · , X∗n be binary random variables that are mutually

independent and such that for all i, X∗i , is independent of X1, · · · , Xi−1. Assume that for all
i and all x1, ..., xi−1 ∈ {0, 1},

Pr [Xi = 1|X1 = x1, · · · , Xi−1 = xi−1] > Pr [X∗i = 1] .

Then for all a > 0, we have

Pr

[
n∑
i=1

Xi 6 a

]
6 Pr

[
n∑
i=1

X∗i 6 a

]
and the latter term can be bounded by any deviation bound for independent random variables.

The proof of the above lemma can be found in [3, Lemma 1.18].

Lemma A.4. Suppose that A(G, l) has allocated the balls until the (t+ 1)-th ball, for some
0 6 t 6 n. Then, for every given v ∈ V (G) we have

Pr [v ∈Wt+1] =

l∑
i=0

Pr [Ci] = (l + 1)/n,

where Ci, 0 6 i 6 l, is the event that for Wt+1 = (u0, u1, . . . , ul), we have v = ui. Furthermore,
for every 0 6 i 6 l, we have

Pr [Ci] = 1/n.

Proof. Let us fix an arbitrary 0 6 i 6 l and any v ∈ V (G). Since G has girth at least ω(l)
and locally looks like a d-regular tree, we can easily compute the number of l-walks visiting v
in the i-th step, that is

d(d− 1)i−2 × (d− 1)l−(i−1) = d(d− 1)l−1.

On the other hand in each round, A(G, l) picks an l-walk randomly from nd(d−1)l−1 possible
l-walks. Thus, we get

Pr [Ci] =
d(d− 1)l−1

nd(d− 1)l−1
=

1

n

and

l∑
i=0

Pr [Ci] =

l∑
i=0

1

n
=
l + 1

n
.

Lemma A.5. Suppose that with probability 1− o(n−2), for every u ∈ V (G),

Emptyt(N(u)) > |N(u)|/2 = d/2.

Then for every v ∈ V (G),

Pr [ball t+ 1 is allocated on v by A] 6
α

n
,

where α is a constant.

Proof. Let Et+1,v be the event that ball t + 1 is placed on a given node v ∈ V (G) and Ft+1

be the event that at least l/10 of nodes in Wt+1 are empty. Let ¬Ft+1 denote the negation of
Ft+1. Using the law of total probability, for every v ∈ V (G) we have

Pr [Et+1,v] = Pr [Et+1,v|v /∈Wt+1] ·Pr [v /∈Wt+1]︸ ︷︷ ︸
=0

+ Pr [Et+1,v|v ∈Wt+1 and Ft+1] ·Pr [v ∈Wt+1 and Ft+1]︸ ︷︷ ︸
6(10/l)Pr[v∈Wt+1]

+ Pr [Et+1,u|v ∈Wt+1 and ¬Ft+1]︸ ︷︷ ︸
61

·Pr [v ∈Wt+1 and ¬Ft+1]

6
10

l
·Pr [v ∈Wt+1] + Pr [v ∈Wt+1 and ¬Ft+1]

10

where the first summand follows since if v /∈ Wt+1, then ball t + 1 cannot be placed on v
and the second one follows because ties are broken uniformly at random. Now, by applying
Lemma A.4 and and Bayse’ rule we have,

Pr [Et+1,v] 6
10(l + 1)

ln
+

l∑
i=0

Pr [¬Ft+1and Ci]

=
10(l + 1)

ln
+

l∑
i=0

Pr [¬Ft+1 | Ci] (1/n). (3)

In what follows we will show that for every i,

Pr [¬Ft+1|Ci] 6 12/l.

Plugging the above bound in Inequity (3) yields that for every v ∈ V (G),

Pr [Et+1,v] 6
22(l + 1)

ln
,

where 22(l + 1)/l is indeed a constant and hence the statement is proved.
Conditioning on event Ci, we only know that node v is the i-th visited node in Wt+1, for

some 0 6 i 6 l. Clearly, Wt+1 can be viewed as the union of two edge-disjoint NBRWs of
lengths (i− 1) and l− (i− 1) started from v, namely W 1

v and W 2
v . Without loss of generality,

assume that |V (W 1
v)| = s > 2 and let

W 1
v = (v = u1, u2, . . . , us),

where d(v, uj) < d(v, uj′) for every 1 < j < j′ 6 s. Clearly, every uj ∈ W 1
v , 2 6 j 6 s, is

randomly chosen from a subset of N(uj−1), say Sj ⊆ N(uj−1) (because we run a NBRW from
uj−1 to reach uj). If it happens that the NBRW has already traversed edge {w, uj−1}, for
some node w, then the walk cannot take this edge again and hence

|Sj | ∈ {d, d− 1}.

Let us define an indicator random variable Xuj for every uj , 2 6 j 6 s, which takes one
whenever uj is empty and zero otherwise. Thus we have

Pr
[
Xuj = 1

]
=

Empty(Sj)

|Sj |
.

Let Kj , 2 6 j 6 s, denote the event that the number of empty nodes of N(uj−1) is at least
d/2. By the assumption, we have Pr [Kj] = 1− o(n−2). So, for every uj , 2 6 j 6 s, we get

Pr
[
Xuj = 1

]
= Pr

[
Xuj = 1 | Kj

]
Pr [Kj] + Pr

[
Xuj = 1 | ¬Kj

]
Pr [¬Kj]

> 1/2((d− 2)/(d− 1))(1− o(n−2)) + o(n−2) > 1/3,

where the first inequality follows from

Empty(Sj)

|Sj |
> min

{
d/2

d
,
d/2− 1

d− 1

}
=

d− 2

2(d− 1)

Since the above lower bound is independent of any Xuj , 2 6 j′ 6 j, we have that for every
2 6 j 6 s,

Pr
[
Xuj = 1 | Xu1 = x1, · · · , Xuj−1 = xj−1

]
> 1/3.

A similar argument also works for the nodes visited by W 2
t+1 and we get Pr [Xu = 1] > 1/3,

for every u ∈ Wt+1 \ {v}. Let Y =
∑
u∈Wt+1\{v}Xu be the number of empty nodes in

Wt+1 \ {v}. Then, we have that E [Y] > l/3. Let Y ∗ be the summation of l independent
Bernoulli random variables with success probability 1/3. By applying Lemma A.3 we get,

Pr [¬Ft+1|Ci] 6 Pr [Y < l/6]

6 Pr [Y ∗ < E [Y ∗] /2] 6 Pr [|Y ∗ −E [Y ∗] | > E [Y ∗] /2] .

We know that Var [Y ∗] 6 E [Y ∗], so applying Chebychev’s bound results into

Pr [|Y ∗ −E [Y ∗] | > E [Y ∗] /2] 6
Var [Y ∗]

(E [Y ∗] /2)2
6

4

E [Y ∗]
.

Thus, we get

Pr [¬Ft+1|Ci] 6 4/E [Y ∗] 6 12/l.

11

In order to prove our key lemma, we apply a potential function argument which is similar
to [6, Theorem 1.4].

Proof of Key Lemma 2.1. Let us define potential function

Φ(t) =
∑

u∈V (G)

exp(at(u)),

where at(u) denotes the number of nonempty nodes of N(u) after allocating t balls. It is clear
that Φ(0) = n. Let us assume that after allocating t balls we have Φ(t) 6 n · ed/4.

eat(u) 6 Φ(t) 6 elogn+d/4.

Since d = ω(logn), we get

at(u) 6 logn+ d/4 < d/2

and consequently Emptyt(N(u)) > d
2
, for every u ∈ V (G). Let us define indicator random

variable It+1(u) for every u ∈ V (G) as follows:

It+1(u) :=

{
1 if ball t+ 1 is placed on an empty node in N(u),
0 otherwise.

Applying Lemma A.5 shows that if Emptyt(N(u)) > d
2
, then for every u ∈ V (G),

Pr [It+1(u) = 1] 6
α · Emptyt(N(u))

n
6
α · d
n

,

where α is a constant. So we get

E
[
Φ(t+ 1) | Φ(t) 6 n · ed/4

]
6

∑
u∈V (G)

{
Pr [It+1(u) = 1] · eat(u)+1 + Pr [It+1(u) = 0] · eat(u)

}
6

∑
u∈V (G)

(
1 +

α · e · d
n

)
· eat(u) =

(
1 +

α · e · d
n

)
Φ(t).

Let us define Ψ(t) := min{Φ(t), n · e∆/4}. By using above recursive inequality we have that

E [Ψ(t+ 1)] 6

(
1 +

α · e · d
n

)
Ψ(t).

Thus, inductively we have that E [Ψ(t)] 6
(
1 + α·e·d

n

)t
Ψ(0). Let us define n1 = n/(6eα). Then

applying Markov’s inequality implies that

Pr
[
Ψ(n1) > n · ed/4

]
6

(
1 + α·e·d

n

)n1

ed/4
6 e−d/12

So with probability 1− n−ω(1), we have Φ(n1) = Ψ(n1) < n · ed/4. Since Φ(t) is an increasing
function in t, we have that Φ(t) 6 n · ed/4, for every 0 6 t 6 n1, and hence with probability
1− o(n−2), for every u ∈ V (G),

Emptyt(N(u)) > d/2.

So, applying Lemma A.5 shows that for every 0 6 t 6 n1 and u ∈ V (G),

Pr [ball t+ 1 is placed on u by A(G, l)] 6
α

n
.

12

A.2 Proof of Lemma 2.2

Proof. Let us fix an arbitrary (λ, µ)-tree T ⊆ I(G, l) and p1 be the probability that using λ
balls T is built and contained in Hn1 . There are at most n1 6 n ways to choose one ball per
vertex of T and hence at most nλ ways to choose λ balls that are going to pick the vertices of
T . On the other hand, every ball picks a given vertex of T with probability 1/|V (I)|. Thus
we get,

p1 6 nλ · (1/V (I))λ.

Now, we have to add c additional balls for very node in ∪W∈V (T)W , where | ∪W∈V (T) W | =
µ+ q, for some integer q > 0. Let p2 denote the probability that such a event happens. Since
A(G, l) is (α, n1)-uniform with n1 = bn/(6eα)c, we get

p2 6
∞∑
q=0

(
n1

c · (µ+ q)

)(
α · (µ+ q)

n

)c·(µ+q)

6
∞∑
q=0

(
e · n1

c · (µ+ q)

)c·(µ+q)

·
(
α · (µ+ q)

n

)c·(µ+q)

6
∞∑
q=0

(n1 · α · e
n · c

)c·(µ+q)

= (1/6c)cµ
∞∑
q=0

(1/6c)cq

6 2 · (1/6c)cµ,

where we use the fact that for integers 1 6 a 6 b,
(
b
a

)
6 (eb

a
)a and the last inequality follows

from
∑∞
q=0(1/6c)cq 6 2. Since balls are mutually independent, p1 · p2 is an upper bound

for the probability that c-loaded (λ, µ)-tree T appears in Hn1 . By Corollary A.2 we have an
upper bound for the size of family of all (λ, µ)-trees. Hence, taking the union bound over all
(λ, µ)-trees gives an upper bound for appearance probability of a c-loaded (λ, µ)-tree in Hn1 .
Thus we get,

4λ|V (I)| ·∆λ−1 · p1 · p2 6 2 · 4λ|V (I)| ·∆λ−1

(
n

V (I)

)λ
·
(

1

6c

)c·µ
6 2n · 4λ ·

(
∆(I)

V (I)

)λ−1

·
(

1

6 · c

)c·µ
.

By Lemma A.1 we have |V (I)| = nd(d − 1)l−1/2, ∆(I) 6 (l + 1)2d(d − 1)l−1. So the above
bound is simplified as follows,

2n · 4λ
(
2(l + 1)2)λ−1

(
1

6

)c·µ
6 n(l + 1)4λ6−cµ 6 n exp(4λ log(l + 1)− cµ),

where the first inequality follows from

2 · 4λ · 2λ−1(l + 1)2(λ−1) = 8λ(l + 1)2(λ−1) 6 (l + 1)4λ,

which is true for every l > 2.

B Proof of Lemma 3.1

Proof. Let us fix an arbitrary subpath Pi = [ui, ui+1] ∈ Pk(W) and partition it into 3 edge-
disjoint subpaths, say Pi = [ui, u] ∪g [u, v] ∪g [v, ui+1], such that

d(ui, u) = d(v, ui+1) = δ,

where δ = bbl/kc/4c. By the Partition step in PB(ρ, k), we know that

d(ui, ui+1) ∈ {bl/kc, dl/ke}.

So we have
d(u, v) = d(ui, ui+1)− 2δ > 4δ − 2δ = 2δ.

Let S = W ∩ V ([u, v]) and B(S) denotes the set of all balls allocated on nodes of S at height
at least f(W)− ρ. Let Wt denote the chosen l-walk by ball t ∈ B(S). Since each ball t ∈ B(S)
was allocated on a node of S at height at least f(W)−ρ, we have that Wt intersects [u, v] ⊂ Pi,

13

f(Wt) > f(W)−ρ and Wt ∩W 6= ∅. So each Wt satisfies (C2). Now, among all Wt, t ∈ B(S),
we find an l-walk that satisfies (C1) as well. We have

|S| > 2δ,

Every node in S has load at least f(W) > ρ + 1. So, every node in S has at least ρ balls at
height at least f(W)− ρ > 1. Therefor we have,

|B(S)| > |S|ρ > (2δ)ρ > (2δ)(6 logd−1 n/δ
2)

= 12 logd−1 n/δ.

By using the above inequality we have,

|{Wt, t ∈ B(S)}| = |B(S)| > 12 logd−1 n/δ.

Recall that Pi = [ui, u]∪ [u, v]∪ [v, ui+1]. If for some t ∈ B(S), Wt contains ui (or ui+1), then
it also contains subpath [ui, u] (or [v, ui+1]), because Wt intersects [u, v] and G has girth ω(l).
Conditioning on Nδ, [ui, u] and [v, ui+1] are contained in less than 12 logd−1 n/δ l-walks. So
the above inequality shows that there is at least one ball, say t0 ∈ B(S), whose corresponding
l-walk Wt0 contains neither ui nor ui+1 and thus it satisfies (C1). Therefore we conclude that,
for each Pi ∈ Pk(W), WPi exists and PB(ρ, k) on W is valid.

C Proof of Lemma 3.2

Before we present the proof of Lemma 3.2, we need to show some lemmas about the properties
of the recursive construction of the witness tree. Suppose that Hj ⊂ G, 0 6 j 6 h, be the
graphical union of all l-walks up to j + 1-the level (i.e., Lj+1). Then we have the following
lemma.

Lemma C.1. If G has girth at least 10hl, then, for every 0 6 j 6 h, Hj is a tree.

Proof. When j = 0, clearly H0 = R, where R is the root. So the diameter of H0 is l. Assume
that for some j0, 0 6 j0 < h, the diameter of Hj0 is at most (2j0 + 1)l. We know that every
l-walk in the (j0 + 1)-th level intersects a path in Hj0 so the distance between any two nodes
of Hj0+1 increases by at most 2l and thus the diameter of Hj0+1 is at most

(2j0 + 1)l + 2l = (2(j0 + 1) + 1)l.

So we inductively conclude that, for every 0 6 j 6 h, Hj has diameter at most (2j + 1)l.
If for some j, 0 6 j 6 h, Hj contains a cycle, then the length of the cycle is at most
2 · diam(Hi) 6 2(2j + 1)l 6 6hl which contradicts the fact that Hj ⊂ G and G has girth at
least 10hl.

Lemma C.2. For every 1 6 j 6 h, the j-th level contains k(k − 2)j−1 disjoint l-walks.
Moreover every l-walk in the j-the level only intersects one l-walk in the previous levels, which
is its father.

Proof. Let us begin with j = 1. For the sake of a contradiction, assume that WPi ,WPi′ ∈ L1

intersect each other. Recall that the l-walks are created by the Branch step over the edge-
disjoint paths, say Pi = [ui1 , ui+1] and Pi′ = [ui′ , ui′+1] ∈ Pk(R). Clearly, WPi ∪g WPi′ is a
connected graph as they intersect each other. So, by Condition (C1), in the Partition-Branch
procedure, we choose two arbitrary nodes z ∈ V (Pi) ∩WPi and z′ ∈ V (Pi′) ∩WPi′ . Also, let
{ui, ui+1} and {ui′ , ui′+1} be the boundary of Pi and Pi′ , respectively. Since H0 is a tree, there
is a unique path, say Qz,z′ , in H0 = R connecting z to z′. Nodes z and z′ have degree 2 in
H0, so Qz,z′ contains nodes from boundaries of Pi and Pi′ . By (C1), WPi and WPi′ excludes
the boundaries. Thus we get a path from z to z′ via WPi ∪g WPi′ ⊂ H1 that excludes the
boundaries. This contradicts the fact that there is a unique path in H1 ⊃ H0, because H1

is a tree by Lemma C.1. So we infer that there are k disjoint l-walks in L1 and they only
intersect their father (i.e., R). Recall that P ∈ Pk(W) is a free subpath if it does not share
any node with W ’s father. Since W ’s, W ∈ L1, are mutually disjoint, the nodes contained in
the set of free subpaths, P0

k(W), for each W ∈ L1, have degree at most 2 in H1, which we call
it D1 property. In other word, D1 property says that any path in H1 between nodes of two
free subpaths in the first level includes nodes from boundaries of the subpaths (see Figure 2).

Suppose that for some j0, 1 6 j0 6 h, the statement of the lemma and Dj0 hold. Then we
show them for the next level as well.

14

Similar to case j = 1, toward a contradiction assume that two l-walks WP ,WP ′ ∈ Lj0+1

intersect each other. Then, by (C2) we get a path in WP ∪g WP ′ ⊂ Hj0+1 excluding the
boundaries of P and P ′ that connects a node, say x, from P to another node, say y, in P ′.
By Dj0 property, the path in Hj0 connecting x to y uses nodes from the boundaries, while we
get a path in Hj0+1 that exclude boundaries. This is a contradiction because Hj0+1 ⊃ Hj0 is
a tree by Lemma C.1. So the l-walls in Lj0+1 are disjoint and by the construction we have
|Lj0+1| = (k − 2)|Lj0 | and hence |Lj0+1| = k(k − 2)j0 . It only remains to prove every l-walk
only intersect its father in previous levels. Toward a contradiction assume that WP ∈ Lj0+1

intersects a path, say W , in previous levels that is not its father. Let z′ ∈ WP ∩ W and
z ∈ WP ∩ V (P) ⊂ V (P) where P = [u, v] ∈ P0

k(W ′) and W ′ is the father of WP . By (C2),
z is neither u nor v. We now get a new path from z to z′ in Hj0+1 excluding u and v (via
Wp ∪g W) that contradicts the fact that there is only one path from z to z′ in Hj0 including
a node from the boundary of P , as Dj0 property holds. We showed that every two l-walks in
Lj0+1 are disjoint, so the Dj0+1 holds as well.

Proof of Lemma 3.2. Let us consider a graph T whose nodes are the set of all l-walks in⋃h
j=0 Lj , where L0 = {R}. And two nodes are connected, if and only if the corresponding

l-walks intersect each other or vice versa. By Lemma C.2 for every 1 6 j 6 h, the j-th,
level contains k(k− 2)j−1 disjoint l-walks and they intersect either their fathers or their k− 2
children. This implies that T is a subtree of interference graph Hn1 with

|V (T)| = λ = 1 + k

h−1∑
j=0

(k − 2)j .

If we only consider the h-th level, then we get∣∣∪W∈V (T)W
∣∣ > µ = (l + 1) · k(k − 2)h−1.

By (C2) in the Partition-Branch procedure we have that for every W ∈ Lj , 1 6 j 6 h,

f(W) > (h− j)ρ+ c.

Hence every node in ∪W∈V (T)W has load at least c.

D Proof of Lemma 4.1

Proof. Let us fix an arbitrary path [u, v] of length δ, where

δ = bbl/kc/4c = min{bl/16c, b
√

logd n/4c}.

The latter equality is true because we set k = max{4, bl/
√

logd nc}. Clearly, if W be an l-walk
and [u, v] ⊆W = [u0, ul], then

d(u0, u) + d(v, ul) = l − δ.

Moreover, G is a d-regular graph with girth at least ω(l), so the total number of different paths
of length l containing [u, v] is∑

a+b=l−δ

(d− 1)a(d− 1)b = (l − δ + 1) · (d− 1)l−δ.

On the other hand the total number of different paths of length l is n · d · (d− 1)l−1/2. So the
probability that in some round t, 1 6 t 6 n, we get [u, v] ⊆Wt is at most

2(l − δ + 1)(d− 1)l−δ

n · d · (d− 1)l−1
=

2(l − δ + 1)(d− 1)

n · d · (d− 1)δ
6

2l

n(d− 1)δ
.

Let uδ = d6 logd−1 n/δe and {t1, t2, . . . , tuδ} ⊂ [n] be a sequence of distinct rounds of size uδ.
We define indicator random variable Xt1,t2,...,tuδ ([u, v]), which takes one if [u, v] ⊆ Wti , for
every 1 6 i 6 uδ, and zero otherwise. Thus we get

Pr
[
Xt1,t2...,tuδ ([u, v]) = 1

]
6
(

2l/n(d− 1)δ
)uδ

= n−uδ (d− 1)(logd−1(2l)−δ)uδ

6 n−uδ (d− 1)−uδ·δ/2 = n−uδn−3,

15

where the last inequality follows from l ∈ [ω(1), o(logn)] and hence,

logd−1(2l) 6 δ/2.

There are at most nuδ sequences of rounds of size uδ and at most n(d− 1)δ−1 paths of
length δ. Thus, by using the previous upper bound and the union bound over all sequences of
rounds and paths of length δ we have

∑
δ-path

∑
t1,t2,...,tuδ

Pr
[
Xt1,t2...,tuδ ([u, v]) = 1

]
6 nd(d− 1)δ−1nuδ Pr

[
Xt1,t2...,tuδ ([u, v]) = 1

]
6 o(n2)nuδ Pr

[
Xt1,t2...,tuδ ([u, v]) = 1

]
= o(1/n),

where the last inequality follows from δ 6 l = o(logd n). This implies that with probability
1 − o(1/n) there is no path of length δ contained in at least uδ l-walks or equivalently Nδ
holds.

E Balanced Allocation on Sparse Graphs

In this section we present allocation algorithmA′(G, l) for d-regular graphs, with d ∈ [3,O(logn)].
The algorithm proceeds as follows: In each round, every ball picks a node uniformly at random
and it takes a NBRW of length l · rG from the chosen node, where rG = d2 logd−1 logne. After
that the ball collects the load information every rG-th visited node, called the potential choice,
and place itself on a least-loaded potential choice (ties are broken randomly). We now present
the following theorem for the maximum load attained by A′(G, l).
Theorem E.1. Suppose that G is a d-regular graph with girth at least 10l(log logn)2 and
d ∈ [3,O(logn)]. Then, with high probability the maximum load attained by A′(G, l), denoted
by m∗, is bounded from above as follows:

I. If ω(1) 6 l 6 4γ′G, where γ′G =
√

logd n/rG, then we have

m∗ = O
(

logd n · log log n

rGl2

)
.

II. If l > 4γ′G, then we have

m∗ = O
(

log logn

log(l/γG)

)
.

The analysis of allocation algorithm A′(G, l) is almost the same as the algorithm for dense
graphs so we only outline parts of the proof and notations that are slightly different. Let us
start by defining an interference graph and show some of its properties (similar to Section 2)

Definition 5. (Interference graph) For any given pair (G, l), interference graph I′(G, l) is
a graph whose nodes are the set of potential choices in each l · rG-walk on G and two sets are
connected if and only if they intersect each other.

Lemma E.2. We have that

|V (I′)| = nd(d− 1)l·rG−1/2,

∆(I′) 6 (l + 1)2d(d− 1)l·rG−1.

Proof. Since G has girth at least l · rG, each l · rG-walk determines a unique set of potential
choices and hence |V (I′)| is the number of all lrG-walks, that is,

|V (I′)| = nd(d− 1)l·rG−1/2.

It is easy to show that, for every 0 6 i 6 l, each node can be the (irG)-th visited node of
d(d − 1)lrG−1 lrG-walks. So every node is contained in at most (l + 1)d(d − 1)lrG−1 many
walks. On the other hand, each set contains l + 1 nodes and hence,

∆(I′) 6 (l + 1)2d(d− 1)l·rG−1.

16

Similar to Section 2, we can define the (λ, µ)-trees contained in I′ and get the similar
results in terms of V (I′) and ∆(I′).

The shown results for dense graph including appearance probability of a c-loaded (λ, µ)-
tree (Section 2) and witness graphs (Section 3) are based on the local properties of a regualr
graph with degree at ω(logn) and girth 10lh. We also know that allocation algorithm A′(G, l)
samples nodes from a neighborhood of radius l · rG. It only collects the load information
every rG-th visited node and ignore rest of the visited nodes. Now if we sort potential choices
according to their distance from the starting node, say (u0, u1 · · · , ul). It is easy to see that
each ui, 1 6 i 6 l, is chosen from a set of nodes of size at least (d − 1)rG = ω(logn), as the
graph locally looks like a tree.

Roughly speaking, A′(G, l) reduces sparse d-regular graph G to a regular graph with degree
ω(logn) and hence the results also hold for A′.

F A Lower Bound

In this section we derive a lower bound for the maximum load attained by allocation algorithms
on dense and sparse graphs. Define

rG :=

{
1 if d = ω(logn) ,
d2 logd−1 logne otherwise.

Consider the generic balanced allocation A(G, l) that proceeds af follows: each ball takes
a NBRW of length l · rG, and then it places itself on a least-loaded node among every rG-th
visited node. When rG = 1, it means every visited node is considered as a potential choice.
It is easy to see that the algorithm covers both classes of graph. Now we show the following
lower bound for the maximum load.

Theorem F.1 (Lower Bound). Suppose that G be a d-regular n-vertex graph with girth at
least ω(l), where l ∈ [32rG,O(γG)] is an integer and γG =

√
logd n/rG. Then with probability

1− n−Ω(1) the maximum load attained by A(G, l) is at least

Ω

(
logd n

rG · l2

)
.

Proof. We know in each round the algorithm picks a random path of length l · rG. Let us
define indicator random variable XP for every path of length l · rG as follows,

XP :=

{
1 if P is chosen at least τ times by A,
0 otherwise,

where τ will be specified later. The total number of paths of length l · rG, say s, is

nd(d− 1)l·rG−1/2 6 ndl·rG/2.

Let P be an arbitrary path of length l · rG in G. Thus we get

Pr [XP = 1] =

n∑
i=τ

(
n

i

)(
1

s

)i(
1− 1

s

)n−i
>
(n

s · τ

)τ (
1− 1

s

)n
>

(
2

dlrG · τ

)τ (
1− 1

s

)s
> d−(lrG+logd τ)τ/e, (4)

where the second inequality follows from n 6 s 6 n · dlrG/2. By setting

τ =
logd n

6l · rG
,

and using the fact that logd τ < logd logd n 6 rG 6 l we get

(lrG + logd τ)τ 6 logd n/6 + logd n/6 = logd n/3.

By substituting the above upper bound in (4), we get

Pr [XP = 1] = Ω(n−1/3).

Let us define the random variable Y =
∑

all paths XP . By linearity of expectation we have

E [Y] = s ·Pr [XP = 1] = (n · d · (d− 1)lrG−1/2)Ω(n−1/3) = Ω(n2/3). (5)

17

It is easily seen that the random variables XP and XP ′ are negatively correlated, which means
for every P and P ′,

E [XP ·XP ′] 6 E [XP] ·E [XP ′] .

This implies that

Var [Y] =
∑
P

(E
[
X2
P

]
− (E [XP])2) +

∑
P 6=P ′

(E [XPXP ′]−E [XP] E [XP ′])︸ ︷︷ ︸
60

6
∑
P

E
[
X2
P

]
= E [Y] .

Applying Chebychev’s inequality and above inequality yield that

Pr [Y = 0] 6 Pr [|Y −E [Y] | > E [Y]] =
Var [Y]

(E [Y])2
6

1

E [Y]
.

By equality (5) we have that E [Y] = Ω(n2/3). Therefore with probability at least 1 −
O(n−2/3) we have Y > 1, which means there exists a path P that is chosen at least τ times.
Since every P contains l + 1 choices, by the pigeonhole principle there is a node with load at
least

Ω
(τ
l

)
= Ω

(
logd n

rGl2

)
.

18

	1 Introduction
	2 Notations, Definitions and Preliminaries
	2.1 Appearance Probability of a c-Loaded (,)-Tree

	3 Witness Graph
	3.1 Construction of Witness Graph

	4 Balanced Allocation on Dense Graphs
	A Omitted Proofs of Section 2
	A.1 Proof of the Key Lemma
	A.2 Proof of Lemma 2.2

	B Proof of Lemma 3.1
	C Proof of Lemma 3.2
	D Proof of Lemma 4.1
	E Balanced Allocation on Sparse Graphs
	F A Lower Bound

