
Brief Announcement: Ultra-Fast Asynchronous Randomized
Rumor Spreading

Ali Pourmiri
Macquarie University
Sydney, Australia

alipourmiri@gmail.com

Fahimeh Ramezani
Dept. of Mathematics, University of Isfahan

Isfahan, Iran
f.ramezani@sc.ui.ac.ir

ABSTRACT

Standard randomized rumor spreading algorithms propagate
a piece of information, so-called the rumor, in a given net-
work that proceed in synchronized rounds. Starting with a
single informed node, in each subsequent round, every node
calls a random neighbor in order to exchange the rumor (by
sending the rumor to the neighbor (push algorithm) or ask-
ing it from the neighbor (pull algorithm)). Panagiotou et
al. [ISAAC’13] considered a multiple-call version of the algo-
rithms where each node is enabled to make more than one
call in each round. The number of calls of a node is indepen-
dently chosen from a probability distribution R. Seeking for
a more realistic model, we propose an asynchronous version
of the multiple-call algorithms on fully connected networks.
In our model, each node has an independent Poisson clock
whose rate may differ from others. Basically, the clock rate of
each node is independently drawn from a probability distri-
bution R at the beginning of the process. The push algorithm
starts with a single informed node, when the clock of an in-
formed node rings, the node contacts a random neighbor and
sends (pushes) the rumor to the neighbor. Similarly, in the
push-pull, if the clock of a node rings, then the node contacts
a random neighbor in order to exchange the rumor. We study
the effect of R on the spreading time of the algorithms, which
is the time that the algorithm needs to inform all nodes. In
this work, we show that if R is a power law distribution with
exponent β ∈ (2, 3) and ε ∈ [1/n, 1 − 1/n] be an arbitrary
number. Then, in expectation, after O(1+log(1/ε)) time the
push-pull algorithm informs at least (1 − ε)n nodes. More-
over, ifR is an arbitrary distribution with bounded mean and
variance, we show that the push algorithm spreads the rumor
in a complete network with n nodes in 2 logn

E[R]
± O(log log n)

time, with high probability.

CCS CONCEPTS

• Mathematics of computing → Probabilistic algo-
rithms; • Theory of computation → Network flows.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6184-2/19/06.
https://doi.org/10.1145/3323165.3323167

KEYWORDS

randomized rumor spreading, push/pull, asynchronous mod-
els

ACM Reference Format:
Ali Pourmiri and Fahimeh Ramezani. 2019. Brief Announcement:

Ultra-Fast Asynchronous Randomized Rumor Spreading. In 31st
ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’19), June 22–24, 2019, Phoenix, AZ, USA. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3323165.3323167

1 INTRODUCTION

Standard randomized rumor spreading algorithms are im-
portant primitives for disseminating a piece of information,
so-called the rumor, in large and complex networks. One
basic variant of these algorithms is the standard push al-
gorithm which proceeds in synchronized rounds. Initially, an
arbitrary node in a given network knows the rumor. Then, in
each subsequent round, every informed node selects a neigh-
bor uniformly at random and sends (pushes) the rumor to
that neighbor. Similarly, in the standard pull algorithm, in
each round, every uninformed node calls a random neigh-
bor and tries to learn the rumor from it. Moreover, in the
standard push-pull algorithm, every node contacts a random
neighbor and they learn the rumor from each other, if at
least one of them knows it. The algorithms are based on a
simple idea that, in each round, every node may contact a
random neighbor which causes them to be local, scalable and
robust against network failures (cf. [9, 11]). Demers et al. [6]
first introduced the standard push-pull protocol to propagate
an update in a network that consists of replicated databases.
Subsequently, the rumor spreading algorithms have been suc-
cessfully applied in many settings such as failure detection
[25], resource discovery [18], load balancing [4], data aggre-
gation [21], and analysis of the spread of computer viruses
[3]. A well-studied parameter related to the algorithms (i.e.,
push, pull, and push-pull) on a network is the spreading time
which is the time for which all nodes of the network become
informed. Doerr et al. [7] proposed an algorithm in order to
reduce the message complexity, which is the total number of
messages sent by entities of the network during the algorithm
execution. Panagiotou et al. [22] considered a variation of the
rumor spreading algorithms, so-called the multiple-call pro-
tocols, where each node is enabled to contact more than one
random neighbor in each round. More precisely, before the
algorithm starts, each node, say u, picks a random number
ru from a given probability distribution R over positive in-
tegers. Starting with a single informed node, in each round,

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

81

https://doi.org/10.1145/3323165.3323167
https://doi.org/10.1145/3323165.3323167

every node u calls ru random neighbor(s) in order to ex-
change the rumor (using push, pull, or push-pull operation).
In this model, provided R has a bounded mean, the message
complexity increases by at most a constant factor while the
rumor spreads faster than the standard randomized rumor
spreading algorithms.

Besides the synchronized rumor spreading algorithms, an
asynchronous version of the algorithms was defined so that
nodes do not act in a synchronized manner, instead each
node has a clock that ticks according to the arrival times
of a rate 1 Poisson process. When the clock of a node ticks,
the node contacts a randomly selected neighbor to exchange
the rumor (i.e., either push the rumor to the neighbor or
pulls the rumor from the neighbor). Motivated by applica-
tions in sensor, peer-to-peer, social, and ad hoc networks
where a centralized clock does not exist, Boyd et al. [4] con-
sidered the asynchronous push-pull algorithm. In a different
context, Janson [19] showed the asynchronous push-pull re-
quires log n+O(1) time to spread the rumor in a complete
network on n nodes.

In a large and complex network, entities may have differ-
ent communication power and act according to their person-
alized clocks. Seeking for a more realistic model, we consider
an asynchronous version of the multiple-call protocols, where
each node, say u, has an independent Poisson clock with rate
ru, where ru is a random number drawn from R. We some-
times refer to the model as multiple-rate algorithms.

1.1 Our results

In this paper, we throughly study a variation of the asyn-
chronous push and push-pull protocols on fully connected
networks where the clock of each node ticks at arrival times
of a Poisson process whose rate may differ from the others.
More precisely, let [n] = {1, 2, . . . , n} be set nodes of the
network and R denotes a given probability distribution over
[1,∞). We will assume that every node i ∈ [n] has an inde-
pendent Poisson clock with rate ri where each ri, i ∈ [n], is
independently drawn from distribution R, at the beginning
of the algorithm. Starting with a single node which knows the
rumor, the push algorithm proceeds in asynchronous rounds.
When the clock of an informed node ticks, then the node
calls a random neighbor and transmits the rumor to it. We
let Tap be the random time that the push algorithm requires
to propagate the rumor to all n nodes of the network. The
push-pull algorithm is also defined so that when the clock
of a node rings, then the node contacts a randomly selected
neighbor and they exchange the rumor if at least one of
them is aware of the rumor. For every ε ∈ [1/n, 1− 1/n], we
will use Tapp,ε to denote the random time that the push-pull
algorithm needs to inform (1 − ε)n nodes. Our first result
concerns the push algorithm for which we assume that R
has a bounded mean and variance. Here, we show that the
spreading time of the protocol is concentrated around its
mean.

Theorem 1.1. Suppose that R is a given distribution with
mean µ = O(1) and variance σ2 = O(1). Then,

E [Tap] =
2 logn

µ
±O(1).

Moreover, with probability 1−o(1), Tap = 2 logn
µ

±ω(
√
logn).

In the next result, we analyze the push-pull protocol for
which probability distribution R follows a power law with
β ∈ (2, 3). We consider the power law distributions as they
have been observed in many natural phenomena such as de-
gree distribution of complex networks [2], file popularities
in cache networks [5] and etc. More specifically, the power
law distribution with β ∈ (2, 3) has a bounded mean and
unbounded variance. Our proof technique for showing this
result might be of independent interest.

Theorem 1.2. Suppose that R is a power law distribution
with β ∈ (2, 3) and we have a fully connected network of size
n. Before the algorithm starts each node u has a Poisson rate
ru randomly drawn from distribution R. Let ε ∈ [1/n, 1−1/n]
be an arbitrary number. Then, we have

E [Tapp,ε] = O(1 + log 1/ε).

To show the expected spreading time, we analyze the algo-
rithm in three consecutive phases namely, initial, middle and
final phase. In the initial phase, we show that the protocol,
in expectation, requires O(1) time to inform (n/ log2 n)1/β−1

nodes. To do so, we define a sequence of deterministic inte-
gers, namely, w0, w1, . . ., where w0 is constant and show that
there exists k = O(log logn) such that w2k ⩾ (n/ log2 n)1/β−1.
Here, we alternatively consider the pull and push opera-
tion. For some i ⩾ 0, let us start with w2i informed nodes.
Considering only the pull operation, a node u with ru ⩾
w2i+1 will be informed in 2−i time, in expectation. When u
gets informed, we consider the push algorithm and inform
w2i+2 nodes in 2−i time and hence the algorithm informs
w2k, in

∑
i 2

−i+1 = O(1) time. The middle phase starts

with (n/ log2 n)1/β−1 informed nodes and ends with Ω(n)
informed nodes. In this phase, however, we define a different
sequences, we apply a similar technique to show the average
time is a constant. The final phase starts with at least n/c
informed nodes for some constant c and ends when (1− ε)n
nodes get informed. Recall that the clock of every uniformed
node ticks at arrival times of a Poisson process of rate at least
1. Each pull attempt calls an informed node with probability
at least 1/c, because n/c nodes were informed in the previ-
ous phase. Therefore, the waiting time for an uninformed
node to get informed is distributed as an exponential dis-
tribution with constant rate. Applying the order statistics
of exponential random variables shows that the phase ends
after O(log 1/ε) time, in expectation.

1.2 Related Work

Researchers have extensively studied the spreading time of
the synchronous push and push-pull protocols. In one of

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

82

the first papers in this area, Fireze and Grimmett [14] an-
alyzed the spreading time of the synchronous push proto-
col on a fully connected network with n nodes and showed
that the spreading time is log n ± o(logn). The result was
later strengthened by Pittel [24]. Karp et al. [20] studied the
spreading time and the message complexity of the synchro-
nous push-pull on fully connected networks. They showed
that usingO(n log logn) messages the protocol requires log3 n+
O(log log n) rounds to inform all n nodes. Besides the com-
plete network, the protocols have been studied on various
network topologies (e.g., see [10–12]). Giakkoupis [15, 16]
derived an upper bound for the spreading time of the syn-
chronous push-pull algorithm in terms of expansion profile
of the network that is O(min{ logn

Φ
, logn log∆

α
}), where Φ ,

α, and ∆ denote the conductance, vertex expansion, and
maximum degree of the network, respectively.Seeking for
a more realistic model, recently, the asynchronous rumor
spreading protocols on networks have also received much
attention. Boyd et al. [4] proposed the asynchronous push-
pull protocol on the complete network in order to drop the
assumption that the nodes act in a synchronized manner.
In this model, each node has an independent Poisson clock
with rate 1. When the clock of a node rings, the node con-
tacts a random neighbor to exchange the rumor. Panagiotou
and Speidel [23] studied the spreading time of the asyn-
chronous push-pull protocol on Erdös-Rényi random graphs
Gn,p, for any p > logn/n. They showed that the spread-
ing time is logn + O(1) which is almost unaffected by p.
Moreover, they quantified the robustness of the protocol
with respect to transmission and node failures. The algo-
rithm was also studied on preferential attachments [8] and
Chug-Lu random graphs [13]. Let G be a given network
with n nodes and assume that Ts(G) and Ta(G) are the
spreading time of a synchronous and asynchronous rumor
spreading algorithm (push, pull or push-pull) on G, respec-

tively. Acan et al. [1] studied the ratio Ts(G)
TaG

and prove that

Ω(1/ logn) ⩽ Ts(G)
TaG

⩽ O(n2/3). More recently, Giakkoupis et

al. [17] also showed that Ta(G) = O(Ts(G)+log n). Moreover,

they improved the upper bound for Ts(G)
TaG

to n1/2(log n)O(1),

settling down a conjecture in [1], positively.

REFERENCES
[1] Hüseyin Acan, Andrea Collevecchio, Abbas Mehrabian, and Nick

Wormald. 2015. On the Push&Pull Protocol for Rumour Spread-
ing: [Extended Abstract]. In Proceedings of the 2015 ACM Sym-
posium on Principles of Distributed Computing, PODC 2015,
Donostia-San Sebastián, Spain, July 21 - 23, 2015. 405–412.
https://doi.org/10.1145/2767386.2767416

[2] Albert-László Barabási and Réka Albert. 1999. Emergence of
scaling in random networks. Science 286(5439) (1999), 509–512.

[3] Noam Berger, Christian Borgs, Jennifer T. Chayes, and Amin
Saberi. 2005. On the S pread of V iruses on the I nternet. In
Proc. 16th Symp. Discrete Algorithms (SODA). 301–310.

[4] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat
Shah. 2006. Randomized gossip algorithms. IEEE Transactions
on Information Theory 52, 6 (2006), 2508–2530.

[5] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
1999. Web Caching and Zipf-like Distributions: Evidence and Im-
plications. In Proceedings IEEE INFOCOM ’99, The Confer-
ence on Computer Communications, Eighteenth Annual Joint

Conference of the IEEE Computer and Communications Soci-
eties, The Future Is Now, New York, NY, USA, March 21-25,
1999. 126–134. https://doi.org/10.1109/INFCOM.1999.749260

[6] Alan Demers, Mark Gealy, Dan Greene, Carl Hauser, Wes Irish,
John Larson, Sue Manning, Scott Shenker, Howard Sturgis, Dan
Swinehart, Doug Terry, and Don Woods. 1987. Epidemic algo-
rithms for replicated database maintenance. In Proc. 6th Symp.
Principles of Distributed Computing (PODC). 1–12.

[7] Benjamin Doerr and Mahmoud Fouz. 2011. Asymptotically Op-
timal Randomized Rumor Spreading. In Proc. 38th Intl. Coll.
Automata, Languages and Programming (ICALP). 502–513.

[8] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. 2012.
Asynchronous Rumor Spreading in Preferential Attachment
Graphs. In Proc. 13th Scandinavian Workshop Algorithm The-
ory (SWAT). 307–315.

[9] Robert Elsässer and Thomas Sauerwald. 2006. On the Run-
time and Robustness of Randomized Broadcasting. In Algorithms
and Computation, 17th International Symposium, ISAAC 2006,
Kolkata, India, December 18-20, 2006, Proceedings. 349–358.
https://doi.org/10.1007/11940128 36

[10] Robert Elsässer and Thomas Sauerwald. 2008. The power of mem-
ory in randomized broadcasting. In Proc. 19th Symp. Discrete
Algorithms (SODA). 218–227.

[11] Uriel Feige, David Peleg, Prabhakar Raghavan, and Eli Upfal.
1990. Randomized Broadcast in Networks. Random Struct. Al-
gorithms 1, 4 (1990), 447–460.

[12] Nikolaos Fountoulakis and Konstantinos Panagiotou. 2010. Ru-
mor Spreading on Random Regular Graphs and Expanders. In
Proc. 14th Intl. Workshop on Randomization and Comput.
(RANDOM). 560–573.

[13] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Thomas
Sauerwald. 2012. Ultra-fast rumor spreading in social networks.
In Proc. 23th Symp. Discrete Algorithms (SODA). 1642–1660.

[14] Alain Frieze and Geoffrey Grimmett. 1985. The shortest-path
problem for graphs with random-arc-lengths. Discrete Applied
Mathematics 10 (1985), 57–77.

[15] George Giakkoupis. 2011. Tight bounds for rumor spreading in
graphs of a given conductance. In Proc. 28th Symp. Theoretical
Aspects of Computer Science (STACS). 57–68.

[16] George Giakkoupis. 2014. Tight Bounds for Ru-
mor Spreading with Vertex Expansion. In Proc.
25th Symp. Discrete Algorithms (SODA). 801–
815. https://doi.org/10.1137/1.9781611973402.59
arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611973402.59

[17] George Giakkoupis, Yasamin Nazari, and Philipp Woelfel. 2016.
How Asynchrony Affects Rumor Spreading Time. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Com-
puting, PODC 2016, Chicago, IL, USA, July 25-28, 2016. 185–
194. https://doi.org/10.1145/2933057.2933117

[18] Mor Harchol-Balter, Frank Thomson Leighton, and Daniel Lewin.
1999. Resource Discovery in Distributed Networks. In Proc. 18th
Symp. Principles of Distributed Computing (PODC). 229–237.

[19] Svante Janson. 1999. One, Two And Three Times Log N/N For
Paths In A Complete Graph With Random Weights. Combina-
torics, Probability & Computing 8, 4 (1999), 347–361. http:
//journals.cambridge.org/action/displayAbstract?aid=46717

[20] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and
Berthold Vöcking. 2000. Randomized Rumor Spreading. In Proc.
41st Symp. Foundations of Computer Science (FOCS). 565–
574.

[21] David Kempe, Alin Dobra, and Johannes Gehrke. 2003. Gossip-
Based Computation of Aggregate Information. In Proc. 44th
Symp. Foundations of Computer Science (FOCS). 482–491.

[22] Konstantinos Panagiotou, Ali Pourmiri, and Thomas Sauerwald.
2013. Faster Rumor Spreading with Multiple Calls. In Proc. 24th
Intl. Symp. Algorithms and Computation (ISAAC). 446–456.

[23] Konstantinos Panagiotou and Leo Speidel. 2013. Asynchro-
nous Rumor Spreading on Random Graphs. In Algorithms and
Computation - 24th International Symposium, ISAAC 2013,
Hong Kong, China, December 16-18, 2013, Proceedings. 424–
434. https://doi.org/10.1007/978-3-642-45030-3 40

[24] Boris Pittel. 1987. On spreading a rumor. SIAM J. Appl. Math.
47, 1 (1987), 213–223.

[25] Robbert van Renesse, Yaron Minsky, and Mark Hayden. 1998.
A Gossip-Style Failure Detection Service. In Proceedings of the
15th IFIP International Conference on Distributed Systems
Platforms (Middleware’98). 55–70.

Session 2 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

83

https://doi.org/10.1145/2767386.2767416
https://doi.org/10.1109/INFCOM.1999.749260
https://doi.org/10.1007/11940128_36
https://doi.org/10.1137/1.9781611973402.59
http://arxiv.org/abs/http://epubs.siam.org/doi/pdf/10.1137/1.9781611973402.59
https://doi.org/10.1145/2933057.2933117
http://journals.cambridge.org/action/displayAbstract?aid=46717
http://journals.cambridge.org/action/displayAbstract?aid=46717
https://doi.org/10.1007/978-3-642-45030-3_40

	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related Work

	References

